Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Identifying c-fos Expression as a Strategy to Investigate the Actions of General Anesthetics on the Central Nervous System

Author(s): Donghang Zhang , Jin Liu , Tao Zhu and Cheng Zhou*

Volume 20, Issue 1, 2022

Page: [55 - 71] Pages: 17

DOI: 10.2174/1570159X19666210909150200

Price: $65

Abstract

Although general anesthetics have been used in the clinic for more than 170 years, the ways in which they induce amnesia, unconsciousness, analgesia, and immobility remain elusive. Modulations of various neural nuclei and circuits are involved in the actions of general anesthetics. The expression of the immediate-early gene c-fos and its nuclear product, c-fos protein, can be induced by neuronal depolarization; therefore, c-fos staining is commonly used to identify the activated neurons during sleep and/or wakefulness, as well as in various physiological conditions in the central nervous system. Identifying c-fos expression is also a direct and convenient method to explore the effects of general anesthetics on the activity of neural nuclei and circuits. Using c-fos staining, general anesthetics have been found to interact with sleep- and wakefulness-promoting systems throughout the brain, which may explain their ability to induce unconsciousness and emergence from general anesthesia. This review summarizes the actions of general anesthetics on neural nuclei and circuits based on a c-fos expression.

Keywords: General anesthetics, c-fos, neural nuclei/circuits, unconsciousness, anesthesia emergence, analgesia.

Graphical Abstract
[1]
Brown, E.N.; Lydic, R.; Schiff, N.D. General anesthesia, sleep, and coma. N. Engl. J. Med., 2010, 363(27), 2638-2650.
[http://dx.doi.org/10.1056/NEJMra0808281] [PMID: 21190458]
[2]
Franks, N.P. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci., 2008, 9(5), 370-386.
[http://dx.doi.org/10.1038/nrn2372] [PMID: 18425091]
[3]
Robinson, D.H.; Toledo, A.H. Historical development of modern anesthesia. J. Invest. Surg., 2012, 25(3), 141-149.
[http://dx.doi.org/10.3109/08941939.2012.690328] [PMID: 22583009]
[4]
Rose, J.; Weiser, T.G.; Hider, P.; Wilson, L.; Gruen, R.L.; Bickler, S.W. Estimated need for surgery worldwide based on prevalence of diseases: a modelling strategy for the WHO Global Health Estimate. Lancet Glob. Health, 2015, 3(Suppl. 2), S13-S20.
[http://dx.doi.org/10.1016/S2214-109X(15)70087-2]
[5]
Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 2017, 390(10100), 1260-1344.
[http://dx.doi.org/10.1016/S0140-6736(17)32130-X] [PMID: 28919118]
[6]
Alkire, M.T.; Hudetz, A.G.; Tononi, G. Consciousness and anesthesia. Science, 2008, 322(5903), 876-880.
[http://dx.doi.org/10.1126/science.1149213] [PMID: 18988836]
[7]
Koch, C.; Massimini, M.; Boly, M.; Tononi, G. Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci., 2016, 17(5), 307-321.
[http://dx.doi.org/10.1038/nrn.2016.22] [PMID: 27094080]
[8]
Rudolph, U.; Antkowiak, B. Molecular and neuronal substrates for general anaesthetics. Nat. Rev. Neurosci., 2004, 5(9), 709-720.
[http://dx.doi.org/10.1038/nrn1496] [PMID: 15322529]
[9]
Allada, R. An emerging link between general anesthesia and sleep. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2257-2258.
[http://dx.doi.org/10.1073/pnas.0711532105] [PMID: 18272494]
[10]
Suzuki, M.; Larkum, M.E. General anesthesia decouples cortical pyramidal neurons. Cell, 2020, 180(4), 666-676.e13.
[http://dx.doi.org/10.1016/j.cell.2020.01.024] [PMID: 32084339]
[11]
Chastain-Potts, S.E.; Tesic, V.; Tat, Q.L.; Cabrera, O.H.; Quillinan, N.; Jevtovic-Todorovic, V. Sevoflurane exposure results in sex-specific transgenerational upregulation of target IEGs in the Subiculum. Mol. Neurobiol., 2020, 57(1), 11-22.
[http://dx.doi.org/10.1007/s12035-019-01752-0] [PMID: 31512116]
[12]
Hamaya, Y.; Takeda, T.; Dohi, S.; Nakashima, S.; Nozawa, Y. The effects of pentobarbital, isoflurane, and propofol on immediate-early gene expression in the vital organs of the rat. Anesth. Analg., 2000, 90(5), 1177-1183.
[http://dx.doi.org/10.1097/00000539-200005000-00034] [PMID: 10781476]
[13]
Li, X.; Lu, F.; Li, W.; Xu, J.; Sun, X.J.; Qin, L.Z.; Zhang, Q.L.; Yao, Y.; Yu, Q.K.; Liang, X.L. Underlying mechanisms of memory deficits induced by etomidate anesthesia in aged rat model: critical role of immediate early genes. Chin. Med. J. (Engl.), 2016, 129(1), 48-53.
[http://dx.doi.org/10.4103/0366-6999.172570] [PMID: 26712432]
[14]
Lantéri-Minet, M.; Isnardon, P.; de Pommery, J.; Menétrey, D. Spinal and hindbrain structures involved in visceroception and visceronociception as revealed by the expression of Fos, Jun and Krox-24 proteins. Neuroscience, 1993, 55(3), 737-753.
[http://dx.doi.org/10.1016/0306-4522(93)90439-M] [PMID: 8413935]
[15]
Bullitt, E. Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J. Comp. Neurol., 1990, 296(4), 517-530.
[http://dx.doi.org/10.1002/cne.902960402] [PMID: 2113539]
[16]
Morgan, J.I.; Curran, T. Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci., 1989, 12(11), 459-462.
[http://dx.doi.org/10.1016/0166-2236(89)90096-9] [PMID: 2479148]
[17]
Kelz, M.B.; Sun, Y.; Chen, J.; Cheng Meng, Q.; Moore, J.T.; Veasey, S.C.; Dixon, S.; Thornton, M.; Funato, H.; Yanagisawa, M. An essential role for orexins in emergence from general anesthesia. Proc. Natl. Acad. Sci. USA, 2008, 105(4), 1309-1314.
[http://dx.doi.org/10.1073/pnas.0707146105] [PMID: 18195361]
[18]
Jiang-Xie, L.F.; Yin, L.; Zhao, S.; Prevosto, V.; Han, B.X.; Dzirasa, K.; Wang, F. A common neuroendocrine substrate for diverse general anesthetics and sleep. Neuron, 2019, 102(5), 1053-1065.e4.
[http://dx.doi.org/10.1016/j.neuron.2019.03.033] [PMID: 31006556]
[19]
Yatziv, S.L.; Yudco, O.; Dickmann, S.; Devor, M. Patterns of neural activity in the mouse brain: wakefulness vs. general anesthesia. Neurosci. Lett., 2020.735135212
[http://dx.doi.org/10.1016/j.neulet.2020.135212] [PMID: 32593772]
[20]
Saper, C.B.; Scammell, T.E.; Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature, 2005, 437(7063), 1257-1263.
[http://dx.doi.org/10.1038/nature04284] [PMID: 16251950]
[21]
Kroeger, D.; Absi, G.; Gagliardi, C.; Bandaru, S.S.; Madara, J.C.; Ferrari, L.L.; Arrigoni, E.; Münzberg, H.; Scammell, T.E.; Saper, C.B.; Vetrivelan, R. Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice. Nat. Commun., 2018, 9(1), 4129.
[http://dx.doi.org/10.1038/s41467-018-06590-7] [PMID: 30297727]
[22]
Nelson, L.E.; Guo, T.Z.; Lu, J.; Saper, C.B.; Franks, N.P.; Maze, M. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat. Neurosci., 2002, 5(10), 979-984.
[http://dx.doi.org/10.1038/nn913] [PMID: 12195434]
[23]
Lu, J.; Nelson, L.E.; Franks, N.; Maze, M.; Chamberlin, N.L.; Saper, C.B. Role of endogenous sleep-wake and analgesic systems in anesthesia. J. Comp. Neurol., 2008, 508(4), 648-662.
[http://dx.doi.org/10.1002/cne.21685] [PMID: 18383504]
[24]
Nelson, L.E.; Lu, J.; Guo, T.; Saper, C.B.; Franks, N.P.; Maze, M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology, 2003, 98(2), 428-436.
[http://dx.doi.org/10.1097/00000542-200302000-00024] [PMID: 12552203]
[25]
Moore, J.T.; Chen, J.; Han, B.; Meng, Q.C.; Veasey, S.C.; Beck, S.G.; Kelz, M.B. Direct activation of sleep-promoting VLPO neurons by volatile anesthetics contributes to anesthetic hypnosis. Curr. Biol., 2012, 22(21), 2008-2016.
[http://dx.doi.org/10.1016/j.cub.2012.08.042] [PMID: 23103189]
[26]
Han, B.; McCarren, H.S.; O’Neill, D.; Kelz, M.B. Distinctive recruitment of endogenous sleep-promoting neurons by volatile anesthetics and a nonimmobilizer. Anesthesiology, 2014, 121(5), 999-1009.
[http://dx.doi.org/10.1097/ALN.0000000000000383] [PMID: 25057841]
[27]
Ratnakumari, L.; Vysotskaya, T.N.; Duch, D.S.; Hemmings, H.C., Jr Differential effects of anesthetic and nonanesthetic cyclobutanes on neuronal voltage-gated sodium channels. Anesthesiology, 2000, 92(2), 529-541.
[http://dx.doi.org/10.1097/00000542-200002000-00037] [PMID: 10691242]
[28]
Recio-Pinto, E.; Montoya-Gacharna, J.V.; Xu, F.; Blanck, T.J.J. Isoflurane, but Not the Nonimmobilizers F6 and F8, inhibits rat spinal cord motor neuron CaV1 Calcium Currents. Anesth. Analg., 2016, 122(3), 730-737.
[http://dx.doi.org/10.1213/ANE.0000000000001111] [PMID: 26702867]
[29]
Barber, A.F.; Carnevale, V.; Klein, M.L.; Eckenhoff, R.G.; Covarrubias, M. Modulation of a voltage-gated Na+ channel by sevoflurane involves multiple sites and distinct mechanisms. Proc. Natl. Acad. Sci. USA, 2014, 111(18), 6726-6731.
[http://dx.doi.org/10.1073/pnas.1405768111] [PMID: 24753583]
[30]
Lu, B.; Su, Y.; Das, S.; Liu, J.; Xia, J.; Ren, D. The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell, 2007, 129(2), 371-383.
[http://dx.doi.org/10.1016/j.cell.2007.02.041] [PMID: 17448995]
[31]
Yekkirala, A.S.; Roberson, D.P.; Bean, B.P.; Woolf, C.J. Breaking barriers to novel analgesic drug development. Nat. Rev. Drug Discov., 2017, 16(8), 545-564.
[http://dx.doi.org/10.1038/nrd.2017.87] [PMID: 28596533]
[32]
Kelz, M.B.; Mashour, G.A. The biology of general anesthesia from paramecium to primate. Curr. Biol., 2019, 29(22), R1199-R1210.
[http://dx.doi.org/10.1016/j.cub.2019.09.071] [PMID: 31743680]
[33]
Hao, X.; Ou, M.; Zhang, D.; Zhao, W.; Yang, Y.; Liu, J.; Yang, H.; Zhu, T.; Li, Y.; Zhou, C. The effects of general anesthetics on synaptic transmission. Curr. Neuropharmacol., 2020, 18(10), 936-965.
[http://dx.doi.org/10.2174/1570159X18666200227125854] [PMID: 32106800]
[34]
Enyedi, P.; Czirják, G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol. Rev., 2010, 90(2), 559-605.
[http://dx.doi.org/10.1152/physrev.00029.2009] [PMID: 20393194]
[35]
Patel, A.J.; Honoré, E.; Lesage, F.; Fink, M.; Romey, G.; Lazdunski, M. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat. Neurosci., 1999, 2(5), 422-426.
[http://dx.doi.org/10.1038/8084] [PMID: 10321245]
[36]
Pavel, M.A.; Petersen, E.N.; Wang, H.; Lerner, R.A.; Hansen, S.B. Studies on the mechanism of general anesthesia. Proc. Natl. Acad. Sci. USA, 2020, 117(24), 13757-13766.
[http://dx.doi.org/10.1073/pnas.2004259117] [PMID: 32467161]
[37]
Heurteaux, C.; Guy, N.; Laigle, C.; Blondeau, N.; Duprat, F.; Mazzuca, M.; Lang-Lazdunski, L.; Widmann, C.; Zanzouri, M.; Romey, G.; Lazdunski, M. TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J., 2004, 23(13), 2684-2695.
[http://dx.doi.org/10.1038/sj.emboj.7600234] [PMID: 15175651]
[38]
Wague, A.; Joseph, T.T.; Woll, K.A.; Bu, W.; Vaidya, K.A.; Bhanu, N.V.; Garcia, B.A.; Nimigean, C.M.; Eckenhoff, R.G.; Riegelhaupt, P.M. Mechanistic insights into volatile anesthetic modulation of K2P channels. eLife, 2020, 9, 9.
[http://dx.doi.org/10.7554/eLife.59839] [PMID: 33345771]
[39]
Barber, A.F.; Liang, Q.; Covarrubias, M. Novel activation of voltage-gated K(+) channels by sevoflurane. J. Biol. Chem., 2012, 287(48), 40425-40432.
[http://dx.doi.org/10.1074/jbc.M112.405787] [PMID: 23038249]
[40]
Stock, L.; Hosoume, J.; Cirqueira, L.; Treptow, W. Binding of the general anesthetic sevoflurane to ion channels. PLOS Comput. Biol., 2018, 14(11)e1006605
[http://dx.doi.org/10.1371/journal.pcbi.1006605] [PMID: 30475796]
[41]
Feng, Z.X.; Dong, H.; Qu, W.M.; Zhang, W. Oral Delivered Dexmedetomidine Promotes and consolidates non-rapid eye movement sleep via sleep-wake regulation systems in mice. Front. Pharmacol., 2018, 9, 1196.
[http://dx.doi.org/10.3389/fphar.2018.01196] [PMID: 30568589]
[42]
McCarren, H.S.; Chalifoux, M.R.; Han, B.; Moore, J.T.; Meng, Q.C.; Baron-Hionis, N.; Sedigh-Sarvestani, M.; Contreras, D.; Beck, S.G.; Kelz, M.B. α2-Adrenergic stimulation of the ventrolateral preoptic nucleus destabilizes the anesthetic state. J. Neurosci., 2014, 34(49), 16385-16396.
[http://dx.doi.org/10.1523/JNEUROSCI.1135-14.2014] [PMID: 25471576]
[43]
Eiland, M.M.; Ramanathan, L.; Gulyani, S.; Gilliland, M.; Bergmann, B.M.; Rechtschaffen, A.; Siegel, J.M. Increases in amino-cupric-silver staining of the supraoptic nucleus after sleep deprivation. Brain Res., 2002, 945(1), 1-8.
[http://dx.doi.org/10.1016/S0006-8993(02)02448-4] [PMID: 12113945]
[44]
Ohbuchi, T.; Saito, T.; Yokoyama, T.; Hashimoto, H.; Maruyama, T.; Suzuki, H.; Ueta, Y. Osmotic perception of GABAergic synaptic transmission in the supraoptic nucleus of rats. IBRO Rep., 2020, 9, 58-64.
[http://dx.doi.org/10.1016/j.ibror.2020.06.007] [PMID: 32685762]
[45]
Hirose, Y.; Kitazono, T.; Sezaki, M.; Abe, M.; Sakimura, K.; Funato, H.; Handa, H.; Vogt, K.E.; Yanagisawa, M. Hypnotic effect of thalidomide is independent of teratogenic ubiquitin/proteasome pathway. Proc. Natl. Acad. Sci. USA, 2020, 117(37), 23106-23112.
[http://dx.doi.org/10.1073/pnas.1917701117] [PMID: 32848052]
[46]
Yamashita, T.; Yamanaka, A. Lateral hypothalamic circuits for sleep-wake control. Curr. Opin. Neurobiol., 2017, 44, 94-100.
[http://dx.doi.org/10.1016/j.conb.2017.03.020] [PMID: 28427008]
[47]
Yu, X.; Ye, Z.; Houston, C.M.; Zecharia, A.Y.; Ma, Y.; Zhang, Z.; Uygun, D.S.; Parker, S.; Vyssotski, A.L.; Yustos, R.; Franks, N.P.; Brickley, S.G.; Wisden, W. Wakefulness Is Governed by GABA and Histamine Cotransmission. Neuron, 2015, 87(1), 164-178.
[http://dx.doi.org/10.1016/j.neuron.2015.06.003] [PMID: 26094607]
[48]
Pedersen, N.P.; Ferrari, L.; Venner, A.; Wang, J.L.; Abbott, S.B.G.; Vujovic, N.; Arrigoni, E.; Saper, C.B.; Fuller, P.M. Supramammillary glutamate neurons are a key node of the arousal system. Nat. Commun., 2017, 8(1), 1405.
[http://dx.doi.org/10.1038/s41467-017-01004-6] [PMID: 29123082]
[49]
Gelegen, C.; Miracca, G.; Ran, M.Z.; Harding, E.C.; Ye, Z.; Yu, X.; Tossell, K.; Houston, C.M.; Yustos, R.; Hawkins, E.D.; Vyssotski, A.L.; Dong, H.L.; Wisden, W.; Franks, N.P. Excitatory pathways from the lateral habenula enable propofol-induced sedation. Curr. Biol., 2018, 28(4), 580-587.e5.
[http://dx.doi.org/10.1016/j.cub.2017.12.050] [PMID: 29398217]
[50]
Weber, F.; Hoang Do, J.P.; Chung, S.; Beier, K.T.; Bikov, M.; Saffari Doost, M.; Dan, Y. Regulation of REM and Non-REM sleep by periaqueductal GABAergic Neurons. Nat. Commun., 2018, 9(1), 354.
[http://dx.doi.org/10.1038/s41467-017-02765-w] [PMID: 29367602]
[51]
Taylor, N.E.; Van Dort, C.J.; Kenny, J.D.; Pei, J.; Guidera, J.A.; Vlasov, K.Y.; Lee, J.T.; Boyden, E.S.; Brown, E.N.; Solt, K. Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia. Proc. Natl. Acad. Sci. USA, 2016, 113(45), 12826-12831.
[http://dx.doi.org/10.1073/pnas.1614340113] [PMID: 27791160]
[52]
Van Dort, C.J.; Zachs, D.P.; Kenny, J.D.; Zheng, S.; Goldblum, R.R.; Gelwan, N.A.; Ramos, D.M.; Nolan, M.A.; Wang, K.; Weng, F.J.; Lin, Y.; Wilson, M.A.; Brown, E.N. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc. Natl. Acad. Sci. USA, 2015, 112(2), 584-589.
[http://dx.doi.org/10.1073/pnas.1423136112] [PMID: 25548191]
[53]
Hikosaka, O. The habenula: from stress evasion to value-based decision-making. Nat. Rev. Neurosci., 2010, 11(7), 503-513.
[http://dx.doi.org/10.1038/nrn2866] [PMID: 20559337]
[54]
Zhao, H.; Zhang, B.L.; Yang, S.J.; Rusak, B. The role of lateral habenula-dorsal raphe nucleus circuits in higher brain functions and psychiatric illness. Behav. Brain Res., 2015, 277, 89-98.
[http://dx.doi.org/10.1016/j.bbr.2014.09.016] [PMID: 25234226]
[55]
Lazaridis, I.; Tzortzi, O.; Weglage, M.; Märtin, A.; Xuan, Y.; Parent, M.; Johansson, Y.; Fuzik, J.; Fürth, D.; Fenno, L.E.; Ramakrishnan, C.; Silberberg, G.; Deisseroth, K.; Carlén, M.; Meletis, K. A hypothalamus-habenula circuit controls aversion. Mol. Psychiatry, 2019, 24(9), 1351-1368.
[http://dx.doi.org/10.1038/s41380-019-0369-5] [PMID: 30755721]
[56]
Wang, D.; Li, A.; Dong, K.; Li, H.; Guo, Y.; Zhang, X.; Cai, M.; Li, H.; Zhao, G.; Yang, Q. Lateral hypothalamus orexinergic inputs to lateral habenula modulate maladaptation after social defeat stress. Neurobiol. Stress, 2021, 14100298
[http://dx.doi.org/10.1016/j.ynstr.2021.100298] [PMID: 33569507]
[57]
Jhou, T.C.; Geisler, S.; Marinelli, M.; Degarmo, B.A.; Zahm, D.S. The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J. Comp. Neurol., 2009, 513(6), 566-596.
[http://dx.doi.org/10.1002/cne.21891] [PMID: 19235216]
[58]
Gonçalves, L.; Sego, C.; Metzger, M. Differential projections from the lateral habenula to the rostromedial tegmental nucleus and ventral tegmental area in the rat. J. Comp. Neurol., 2012, 520(6), 1278-1300.
[http://dx.doi.org/10.1002/cne.22787] [PMID: 22020635]
[59]
Laurent, V.; Wong, F.L.; Balleine, B.W. The lateral habenula and its input to the rostromedial tegmental nucleus mediates outcome-specific conditioned inhibition. J. Neurosci., 2017, 37(45), 10932-10942.
[http://dx.doi.org/10.1523/JNEUROSCI.3415-16.2017] [PMID: 28986462]
[60]
Hu, H.; Cui, Y.; Yang, Y. Circuits and functions of the lateral habenula in health and in disease. Nat. Rev. Neurosci., 2020, 21(5), 277-295.
[http://dx.doi.org/10.1038/s41583-020-0292-4] [PMID: 32269316]
[61]
Yang, Y.; Cui, Y.; Sang, K.; Dong, Y.; Ni, Z.; Ma, S.; Hu, H. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature, 2018, 554(7692), 317-322.
[http://dx.doi.org/10.1038/nature25509] [PMID: 29446381]
[62]
Cerniauskas, I.; Winterer, J.; de Jong, J.W.; Lukacsovich, D.; Yang, H.; Khan, F.; Peck, J.R.; Obayashi, S.K.; Lilascharoen, V.; Lim, B.K.; Földy, C.; Lammel, S. Chronic stress induces activity, synaptic, and transcriptional remodeling of the lateral habenula associated with deficits in motivated behaviors. Neuron, 2019, 104(5), 899-915.e8.
[http://dx.doi.org/10.1016/j.neuron.2019.09.005] [PMID: 31672263]
[63]
Mendoza, J. Circadian neurons in the lateral habenula: Clocking motivated behaviors. Pharmacol. Biochem. Behav., 2017, 162, 55-61.
[http://dx.doi.org/10.1016/j.pbb.2017.06.013] [PMID: 28666896]
[64]
Abulafia, R.; Zalkind, V.; Devor, M. Cerebral activity during the anesthesia-like state induced by mesopontine microinjection of pentobarbital. J. Neurosci., 2009, 29(21), 7053-7064.
[http://dx.doi.org/10.1523/JNEUROSCI.1357-08.2009] [PMID: 19474332]
[65]
Harris, H.N.; Peng, Y.B. Evidence and explanation for the involvement of the nucleus accumbens in pain processing. Neural Regen. Res., 2020, 15(4), 597-605.
[http://dx.doi.org/10.4103/1673-5374.266909] [PMID: 31638081]
[66]
Ma, J.; Leung, L.S. Limbic system participates in mediating the effects of general anesthetics. Neuropsychopharmacology, 2006, 31(6), 1177-1192.
[http://dx.doi.org/10.1038/sj.npp.1300909] [PMID: 16205783]
[67]
Hong, Z.Y.; Huang, Z.L.; Qu, W.M.; Eguchi, N.; Urade, Y.; Hayaishi, O. An adenosine A receptor agonist induces sleep by increasing GABA release in the tuberomammillary nucleus to inhibit histaminergic systems in rats. J. Neurochem., 2005, 92(6), 1542-1549.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02991.x] [PMID: 15748171]
[68]
Zhang, J.P.; Xu, Q.; Yuan, X.S.; Cherasse, Y.; Schiffmann, S.N.; de Kerchove d’Exaerde, A.; Qu, W.M.; Urade, Y.; Lazarus, M.; Huang, Z.L.; Li, R.X. Projections of nucleus accumbens adenosine A2A receptor neurons in the mouse brain and their implications in mediating sleep-wake regulation. Front. Neuroanat., 2013, 7, 43.
[http://dx.doi.org/10.3389/fnana.2013.00043] [PMID: 24409122]
[69]
Chen, L.; Li, S.; Zhou, Y.; Liu, T.; Cai, A.; Zhang, Z.; Xu, F.; Manyande, A.; Wang, J.; Peng, M. Neuronal mechanisms of adenosine A(2A) receptors in the loss of consciousness induced by propofol general anesthesia with functional magnetic resonance imaging. J. Neurochem., 2021, 156(6), 1020-1032.
[70]
Bao, W.W.; Xu, W.; Pan, G.J.; Wang, T.X.; Han, Y.; Qu, W.M.; Li, W.X.; Huang, Z.L. Nucleus accumbens neurons expressing dopamine D1 receptors modulate states of consciousness in sevoflurane anesthesia. Curr. Biol., 2021, 31(9), 1893-1902.e5.
[http://dx.doi.org/10.1016/j.cub.2021.02.011] [PMID: 33705720]
[71]
Haas, H.; Panula, P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat. Rev. Neurosci., 2003, 4(2), 121-130.
[http://dx.doi.org/10.1038/nrn1034] [PMID: 12563283]
[72]
Peyron, C.; Tighe, D.K.; van den Pol, A.N.; de Lecea, L.; Heller, H.C.; Sutcliffe, J.G.; Kilduff, T.S. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci., 1998, 18(23), 9996-10015.
[http://dx.doi.org/10.1523/JNEUROSCI.18-23-09996.1998] [PMID: 9822755]
[73]
Mignot, E.; Lammers, G.J.; Ripley, B.; Okun, M.; Nevsimalova, S.; Overeem, S.; Vankova, J.; Black, J.; Harsh, J.; Bassetti, C.; Schrader, H.; Nishino, S. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch. Neurol., 2002, 59(10), 1553-1562.
[http://dx.doi.org/10.1001/archneur.59.10.1553] [PMID: 12374492]
[74]
Sakurai, T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat. Rev. Neurosci., 2007, 8(3), 171-181.
[http://dx.doi.org/10.1038/nrn2092] [PMID: 17299454]
[75]
Kushikata, T.; Hirota, K.; Yoshida, H.; Kudo, M.; Lambert, D.G.; Smart, D.; Jerman, J.C.; Matsuki, A. Orexinergic neurons and barbiturate anesthesia. Neuroscience, 2003, 121(4), 855-863.
[http://dx.doi.org/10.1016/S0306-4522(03)00554-2] [PMID: 14580935]
[76]
Zecharia, A.Y.; Nelson, L.E.; Gent, T.C.; Schumacher, M.; Jurd, R.; Rudolph, U.; Brickley, S.G.; Maze, M.; Franks, N.P. The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265M knock-in mouse. J. Neurosci., 2009, 29(7), 2177-2187.
[http://dx.doi.org/10.1523/JNEUROSCI.4997-08.2009] [PMID: 19228970]
[77]
Gompf, H.; Chen, J.; Sun, Y.; Yanagisawa, M.; Aston-Jones, G.; Kelz, M.B. Halothane-induced hypnosis is not accompanied by inactivation of orexinergic output in rodents. Anesthesiology, 2009, 111(5), 1001-1009.
[http://dx.doi.org/10.1097/ALN.0b013e3181b764b3] [PMID: 19809293]
[78]
Eckenhoff, M.F.; Eckenhoff, R.G. Quantitative autoradiography of halothane binding in rat brain. J. Pharmacol. Exp. Ther., 1998, 285(1), 371-376.
[PMID: 9536033]
[79]
Correa, A.M. Gating kinetics of Shaker K+ channels are differentially modified by general anesthetics. Am. J. Physiol., 1998, 275(4), C1009-C1021.
[http://dx.doi.org/10.1152/ajpcell.1998.275.4.C1009] [PMID: 9755054]
[80]
Peterlin, Z.; Ishizawa, Y.; Araneda, R.; Eckenhoff, R.; Firestein, S. Selective activation of G-protein coupled receptors by volatile anesthetics. Mol. Cell. Neurosci., 2005, 30(4), 506-512.
[http://dx.doi.org/10.1016/j.mcn.2005.08.012] [PMID: 16185894]
[81]
Devor, M.; Zalkind, V. Reversible analgesia, atonia, and loss of consciousness on bilateral intracerebral microinjection of pentobarbital. Pain, 2001, 94(1), 101-112.
[http://dx.doi.org/10.1016/S0304-3959(01)00345-1] [PMID: 11576749]
[82]
Leung, L.S.; Luo, T.; Ma, J.; Herrick, I. Brain areas that influence general anesthesia. Prog. Neurobiol., 2014, 122, 24-44.
[http://dx.doi.org/10.1016/j.pneurobio.2014.08.001] [PMID: 25172271]
[83]
Minert, A.; Baron, M.; Devor, M. Reduced sensitivity to anesthetic agents upon lesioning the mesopontine tegmental anesthesia area in rats depends on anesthetic type. Anesthesiology, 2020, 132(3), 535-550.
[http://dx.doi.org/10.1097/ALN.0000000000003087] [PMID: 31850942]
[84]
Minert, A.; Yatziv, S.L.; Devor, M. Location of the mesopontine neurons responsible for maintenance of anesthetic loss of consciousness. J. Neurosci., 2017, 37(38), 9320-9331.
[http://dx.doi.org/10.1523/JNEUROSCI.0544-17.2017] [PMID: 28821646]
[85]
Minert, A.; Devor, M. Brainstem node for loss of consciousness due to GABA(A) receptor-active anesthetics. Exp. Neurol., 2016, 275(Pt 1), 38-45.
[http://dx.doi.org/10.1016/j.expneurol.2015.10.001] [PMID: 26436687]
[86]
Lanir-Azaria, S.; Meiri, G.; Avigdor, T.; Minert, A.; Devor, M. Enhanced wakefulness following lesions of a mesopontine locus essential for the induction of general anesthesia. Behav. Brain Res., 2018, 341, 198-211.
[http://dx.doi.org/10.1016/j.bbr.2017.12.035] [PMID: 29288749]
[87]
Takayama, K.; Suzuki, T.; Miura, M. The comparison of effects of various anesthetics on expression of Fos protein in the rat brain. Neurosci. Lett., 1994, 176(1), 59-62.
[http://dx.doi.org/10.1016/0304-3940(94)90871-0] [PMID: 7970238]
[88]
Boly, M.; Garrido, M.I.; Gosseries, O.; Bruno, M.A.; Boveroux, P.; Schnakers, C.; Massimini, M.; Litvak, V.; Laureys, S.; Friston, K. Preserved feedforward but impaired top-down processes in the vegetative state. Science, 2011, 332(6031), 858-862.
[http://dx.doi.org/10.1126/science.1202043] [PMID: 21566197]
[89]
Cascella, M.; Bimonte, S.; Di Napoli, R. Delayed emergence from anesthesia: what we know and how we act. Local Reg. Anesth., 2020, 13, 195-206.
[http://dx.doi.org/10.2147/LRA.S230728] [PMID: 33177867]
[90]
Cascella, M.; Bimonte, S.; Amruthraj, N.J. Awareness during emergence from anesthesia: Features and future research directions. World J. Clin. Cases, 2020, 8(2), 245-254.
[http://dx.doi.org/10.12998/wjcc.v8.i2.245] [PMID: 32047772]
[91]
Tarnal, V.; Vlisides, P.E.; Mashour, G.A. The Neurobiology of Anesthetic Emergence. J. Neurosurg. Anesthesiol., 2016, 28(3), 250-255.
[http://dx.doi.org/10.1097/ANA.0000000000000212] [PMID: 26274626]
[92]
Vanini, G.; Nemanis, K.; Baghdoyan, H.A.; Lydic, R. GABAergic transmission in rat pontine reticular formation regulates the induction phase of anesthesia and modulates hyperalgesia caused by sleep deprivation. Eur. J. Neurosci., 2014, 40(1), 2264-2273.
[http://dx.doi.org/10.1111/ejn.12571] [PMID: 24674578]
[93]
Zhang, L.N.; Li, Z.J.; Tong, L.; Guo, C.; Niu, J.Y.; Hou, W.G.; Dong, H.L. Orexin-A facilitates emergence from propofol anesthesia in the rat. Anesth. Analg., 2012, 115(4), 789-796.
[http://dx.doi.org/10.1213/ANE.0b013e3182645ea3] [PMID: 22798527]
[94]
Ren, S.; Wang, Y.; Yue, F.; Cheng, X.; Dang, R.; Qiao, Q.; Sun, X.; Li, X.; Jiang, Q.; Yao, J.; Qin, H.; Wang, G.; Liao, X.; Gao, D.; Xia, J.; Zhang, J.; Hu, B.; Yan, J.; Wang, Y.; Xu, M.; Han, Y.; Tang, X.; Chen, X.; He, C.; Hu, Z. The paraventricular thalamus is a critical thalamic area for wakefulness. Science, 2018, 362(6413), 429-434.
[http://dx.doi.org/10.1126/science.aat2512] [PMID: 30361367]
[95]
Hoffman, G.E.; Smith, M.S.; Verbalis, J.G. c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front. Neuroendocrinol., 1993, 14(3), 173-213.
[http://dx.doi.org/10.1006/frne.1993.1006] [PMID: 8349003]
[96]
Kayaba, Y.; Nakamura, A.; Kasuya, Y.; Ohuchi, T.; Yanagisawa, M.; Komuro, I.; Fukuda, Y.; Kuwaki, T. Attenuated defense response and low basal blood pressure in orexin knockout mice. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2003, 285(3), R581-R593.
[http://dx.doi.org/10.1152/ajpregu.00671.2002] [PMID: 12750151]
[97]
Yoshimichi, G.; Yoshimatsu, H.; Masaki, T.; Sakata, T. Orexin-A regulates body temperature in coordination with arousal status. Exp. Biol. Med. (Maywood), 2001, 226(5), 468-476.
[http://dx.doi.org/10.1177/153537020122600513] [PMID: 11393177]
[98]
Brisbare-Roch, C.; Dingemanse, J.; Koberstein, R.; Hoever, P.; Aissaoui, H.; Flores, S.; Mueller, C.; Nayler, O.; van Gerven, J.; de Haas, S.L.; Hess, P.; Qiu, C.; Buchmann, S.; Scherz, M.; Weller, T.; Fischli, W.; Clozel, M.; Jenck, F. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat. Med., 2007, 13(2), 150-155.
[http://dx.doi.org/10.1038/nm1544] [PMID: 17259994]
[99]
Shirasaka, T.; Nakazato, M.; Matsukura, S.; Takasaki, M.; Kannan, H. Sympathetic and cardiovascular actions of orexins in conscious rats. Am. J. Physiol., 1999, 277(6), R1780-R1785.
[PMID: 10600926]
[100]
Yasuda, Y.; Takeda, A.; Fukuda, S.; Suzuki, H.; Ishimoto, M.; Mori, Y.; Eguchi, H.; Saitoh, R.; Fujihara, H.; Honda, K.; Higuchi, T. Orexin a elicits arousal electroencephalography without sympathetic cardiovascular activation in isoflurane-anesthetized rats. Anesth. Analg., 2003, 97(6), 1663-1666.
[http://dx.doi.org/10.1213/01.ANE.0000089964.85834.EF] [PMID: 14633539]
[101]
Wang, D.; Guo, Y.; Li, H.; Li, J.; Ran, M.; Guo, J.; Yin, L.; Zhao, S.; Yang, Q.; Dong, H. Selective optogenetic activation of orexinergic terminals in the basal forebrain and locus coeruleus promotes emergence from isoflurane anaesthesia in rats. Br. J. Anaesth., 2020, 126(1), 279-292.
[http://dx.doi.org/10.1016/j.bja.2020.09.037] [PMID: 33131759]
[102]
Zhao, S.; Li, R.; Li, H.; Wang, S.; Zhang, X.; Wang, D.; Guo, J.; Li, H.; Li, A.; Tong, T.; Zhong, H.; Yang, Q.; Dong, H. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula modulate the anesthetic potency of isoflurane in mice. Neurosci. Bull., 2021, 37(7), 934-946.
[http://dx.doi.org/10.1007/s12264-021-00674-z] [PMID: 33847915]
[103]
Nury, H.; Van Renterghem, C.; Weng, Y.; Tran, A.; Baaden, M.; Dufresne, V.; Changeux, J.P.; Sonner, J.M.; Delarue, M.; Corringer, P.J. X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature, 2011, 469(7330), 428-431.
[http://dx.doi.org/10.1038/nature09647] [PMID: 21248852]
[104]
Brannigan, G.; LeBard, D.N.; Hénin, J.; Eckenhoff, R.G.; Klein, M.L. Multiple binding sites for the general anesthetic isoflurane identified in the nicotinic acetylcholine receptor transmembrane domain. Proc. Natl. Acad. Sci. USA, 2010, 107(32), 14122-14127.
[http://dx.doi.org/10.1073/pnas.1008534107] [PMID: 20660787]
[105]
Jayakar, S.S.; Dailey, W.P.; Eckenhoff, R.G.; Cohen, J.B. Identification of propofol binding sites in a nicotinic acetylcholine receptor with a photoreactive propofol analog. J. Biol. Chem., 2013, 288(9), 6178-6189.
[http://dx.doi.org/10.1074/jbc.M112.435909] [PMID: 23300078]
[106]
Berger, M.; Gray, J.A.; Roth, B.L. The expanded biology of serotonin. Annu. Rev. Med., 2009, 60, 355-366.
[http://dx.doi.org/10.1146/annurev.med.60.042307.110802] [PMID: 19630576]
[107]
Jann, M.W.; Slade, J.H. Antidepressant agents for the treatment of chronic pain and depression. Pharmacotherapy, 2007, 27(11), 1571-1587.
[http://dx.doi.org/10.1592/phco.27.11.1571] [PMID: 17963465]
[108]
Giorgetti, M.; Tecott, L.H. Contributions of 5-HT(2C) receptors to multiple actions of central serotonin systems. Eur. J. Pharmacol., 2004, 488(1-3), 1-9.
[http://dx.doi.org/10.1016/j.ejphar.2004.01.036] [PMID: 15044029]
[109]
Seifinejad, A.; Li, S.; Possovre, M.L.; Vassalli, A.; Tafti, M. Hypocretinergic interactions with the serotonergic system regulate REM sleep and cataplexy. Nat. Commun., 2020, 11(1), 6034.
[http://dx.doi.org/10.1038/s41467-020-19862-y] [PMID: 33247179]
[110]
Kandel, E.R. The molecular biology of memory storage: a dialogue between genes and synapses. Science, 2001, 294(5544), 1030-1038.
[http://dx.doi.org/10.1126/science.1067020] [PMID: 11691980]
[111]
Roberts, A.J.; Krucker, T.; Levy, C.L.; Slanina, K.A.; Sutcliffe, J.G.; Hedlund, P.B. Mice lacking 5-HT receptors show specific impairments in contextual learning. Eur. J. Neurosci., 2004, 19(7), 1913-1922.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03288.x] [PMID: 15078565]
[112]
Yang, C.; Zhang, L.; Hao, H.; Ran, M.; Li, J.; Dong, H. Serotonergic neurons in the dorsal raphe nucleus mediate the arousal-promoting effect of orexin during isoflurane anesthesia in male rats. Neuropeptides, 2019, 75, 25-33.
[http://dx.doi.org/10.1016/j.npep.2019.03.004] [PMID: 30935682]
[113]
Fuller, P.M.; Sherman, D.; Pedersen, N.P.; Saper, C.B.; Lu, J. Reassessment of the structural basis of the ascending arousal system. J. Comp. Neurol., 2011, 519(5), 933-956.
[http://dx.doi.org/10.1002/cne.22559] [PMID: 21280045]
[114]
Kaur, S.; Pedersen, N.P.; Yokota, S.; Hur, E.E.; Fuller, P.M.; Lazarus, M.; Chamberlin, N.L.; Saper, C.B. Glutamatergic signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal. J. Neurosci., 2013, 33(18), 7627-7640.
[http://dx.doi.org/10.1523/JNEUROSCI.0173-13.2013] [PMID: 23637157]
[115]
Niu, J.G.; Yokota, S.; Tsumori, T.; Qin, Y.; Yasui, Y. Glutamatergic lateral parabrachial neurons innervate orexin-containing hypothalamic neurons in the rat. Brain Res., 2010, 1358, 110-122.
[http://dx.doi.org/10.1016/j.brainres.2010.08.056] [PMID: 20735997]
[116]
Fulwiler, C.E.; Saper, C.B. Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res., 1984, 319(3), 229-259.
[http://dx.doi.org/10.1016/0165-0173(84)90012-2] [PMID: 6478256]
[117]
Muindi, F.; Kenny, J.D.; Taylor, N.E.; Solt, K.; Wilson, M.A.; Brown, E.N.; Van Dort, C.J. Electrical stimulation of the parabrachial nucleus induces reanimation from isoflurane general anesthesia. Behav. Brain Res., 2016, 306, 20-25.
[http://dx.doi.org/10.1016/j.bbr.2016.03.021] [PMID: 26971629]
[118]
Percheron, G. The anatomy of the arterial supply of the human thalamus and its use for the interpretation of the thalamic vascular pathology. Z. Neurol., 1973, 205(1), 1-13.
[http://dx.doi.org/10.1007/BF00315956] [PMID: 4126735]
[119]
Schmahmann, J.D. Vascular syndromes of the thalamus. Stroke, 2003, 34(9), 2264-2278.
[http://dx.doi.org/10.1161/01.STR.0000087786.38997.9E] [PMID: 12933968]
[120]
Honig, A.; Eliahou, R.; Eichel, R.; Shemesh, A.A.; Ben-Hur, T.; Auriel, E. Acute bithalamic infarct manifesting as sleep-like coma: A diagnostic challenge. J. Clin. Neurosci., 2016, 34, 81-85.
[http://dx.doi.org/10.1016/j.jocn.2016.05.014] [PMID: 27593970]
[121]
Hermann, D.M.; Siccoli, M.; Brugger, P.; Wachter, K.; Mathis, J.; Achermann, P.; Bassetti, C.L. Evolution of neurological, neuropsychological and sleep-wake disturbances after paramedian thalamic stroke. Stroke, 2008, 39(1), 62-68.
[http://dx.doi.org/10.1161/STROKEAHA.107.494955] [PMID: 18048862]
[122]
Vertes, R.P.; Linley, S.B.; Hoover, W.B. Limbic circuitry of the midline thalamus. Neurosci. Biobehav. Rev., 2015, 54, 89-107.
[http://dx.doi.org/10.1016/j.neubiorev.2015.01.014] [PMID: 25616182]
[123]
Groenewegen, H.J.; Berendse, H.W. The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci., 1994, 17(2), 52-57.
[http://dx.doi.org/10.1016/0166-2236(94)90074-4] [PMID: 7512768]
[124]
Jasper, H. Diffuse projection systems: the integrative action of the thalamic reticular system. Electroencephalogr. Clin. Neurophysiol., 1949, 1(4), 405-419.
[http://dx.doi.org/10.1016/0013-4694(49)90213-8] [PMID: 18421831]
[125]
Krout, K.E.; Belzer, R.E.; Loewy, A.D. Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol., 2002, 448(1), 53-101.
[http://dx.doi.org/10.1002/cne.10236] [PMID: 12012375]
[126]
Xu, W.; Südhof, T.C. A neural circuit for memory specificity and generalization. Science, 2013, 339(6125), 1290-1295.
[http://dx.doi.org/10.1126/science.1229534] [PMID: 23493706]
[127]
Van der Werf, Y.D.; Witter, M.P.; Groenewegen, H.J. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Brain Res. Rev., 2002, 39(2-3), 107-140.
[http://dx.doi.org/10.1016/S0165-0173(02)00181-9] [PMID: 12423763]
[128]
Beas, B.S.; Wright, B.J.; Skirzewski, M.; Leng, Y.; Hyun, J.H.; Koita, O.; Ringelberg, N.; Kwon, H.B.; Buonanno, A.; Penzo, M.A. The locus coeruleus drives disinhibition in the midline thalamus via a dopaminergic mechanism. Nat. Neurosci., 2018, 21(7), 963-973.
[http://dx.doi.org/10.1038/s41593-018-0167-4] [PMID: 29915192]
[129]
Ao, Y.; Yang, B.; Zhang, C.; Li, S.; Xu, H. Application of quinpirole in the paraventricular thalamus facilitates emergence from isoflurane anesthesia in mice. Brain Behav., 2021, 11(1)e01903
[http://dx.doi.org/10.1002/brb3.1903] [PMID: 33128305]
[130]
Schwarz, L.A.; Luo, L. Organization of the locus coeruleus-norepinephrine system. Curr. Biol., 2015, 25(21), R1051-R1056.
[http://dx.doi.org/10.1016/j.cub.2015.09.039] [PMID: 26528750]
[131]
Berridge, C.W.; Waterhouse, B.D. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev., 2003, 42(1), 33-84.
[http://dx.doi.org/10.1016/S0165-0173(03)00143-7] [PMID: 12668290]
[132]
España, R.A.; Schmeichel, B.E.; Berridge, C.W. Norepinephrine at the nexus of arousal, motivation and relapse. Brain Res,, 2016, 1641(Pt B), 207-216.
[http://dx.doi.org/10.1016/j.brainres.2016.01.002]
[133]
Sara, S.J. The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci., 2009, 10(3), 211-223.
[http://dx.doi.org/10.1038/nrn2573] [PMID: 19190638]
[134]
Song, A.H.; Kucyi, A.; Napadow, V.; Brown, E.N.; Loggia, M.L.; Akeju, O. Pharmacological Modulation of Noradrenergic Arousal Circuitry Disrupts Functional Connectivity of the Locus Ceruleus in Humans. J. Neurosci., 2017, 37(29), 6938-6945.
[http://dx.doi.org/10.1523/JNEUROSCI.0446-17.2017] [PMID: 28626012]
[135]
Hayat, H.; Regev, N.; Matosevich, N.; Sales, A.; Paredes-Rodriguez, E.; Krom, A.J.; Bergman, L.; Li, Y.; Lavigne, M.; Kremer, E.J.; Yizhar, O.; Pickering, A.E.; Nir, Y. Locus coeruleus norepinephrine activity mediates sensory-evoked awakenings from sleep. Sci. Adv., 2020, 6(15)eaaz4232
[http://dx.doi.org/10.1126/sciadv.aaz4232] [PMID: 32285002]
[136]
Vazey, E.M.; Aston-Jones, G. Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proc. Natl. Acad. Sci. USA, 2014, 111(10), 3859-3864.
[http://dx.doi.org/10.1073/pnas.1310025111] [PMID: 24567395]
[137]
Carter, M.E.; Yizhar, O.; Chikahisa, S.; Nguyen, H.; Adamantidis, A.; Nishino, S.; Deisseroth, K.; de Lecea, L. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci., 2010, 13(12), 1526-1533.
[http://dx.doi.org/10.1038/nn.2682] [PMID: 21037585]
[138]
Carter, M.E.; de Lecea, L.; Adamantidis, A. Functional wiring of hypocretin and LC-NE neurons: implications for arousal. Front. Behav. Neurosci., 2013, 7, 43.
[http://dx.doi.org/10.3389/fnbeh.2013.00043] [PMID: 23730276]
[139]
Zhang, Z.; Ferretti, V.; Güntan, İ.; Moro, A.; Steinberg, E.A.; Ye, Z.; Zecharia, A.Y.; Yu, X.; Vyssotski, A.L.; Brickley, S.G.; Yustos, R.; Pillidge, Z.E.; Harding, E.C.; Wisden, W.; Franks, N.P. Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists. Nat. Neurosci., 2015, 18(4), 553-561.
[http://dx.doi.org/10.1038/nn.3957] [PMID: 25706476]
[140]
Hua, T.; Chen, B.; Lu, D.; Sakurai, K.; Zhao, S.; Han, B.X.; Kim, J.; Yin, L.; Chen, Y.; Lu, J.; Wang, F. General anesthetics activate a potent central pain-suppression circuit in the amygdala. Nat. Neurosci., 2020, 23(7), 854-868.
[http://dx.doi.org/10.1038/s41593-020-0632-8] [PMID: 32424286]
[141]
Solt, K.; Forman, S.A. Correlating the clinical actions and molecular mechanisms of general anesthetics. Curr. Opin. Anaesthesiol., 2007, 20(4), 300-306.
[http://dx.doi.org/10.1097/ACO.0b013e32816678a5] [PMID: 17620835]
[142]
Gorlin, A.W.; Rosenfeld, D.M.; Ramakrishna, H. Intravenous sub-anesthetic ketamine for perioperative analgesia. J. Anaesthesiol. Clin. Pharmacol., 2016, 32(2), 160-167.
[http://dx.doi.org/10.4103/0970-9185.182085] [PMID: 27275042]
[143]
Yang, J.; Chai, Y.F.; Gong, C.Y.; Li, G.H.; Luo, N.; Luo, N.F.; Liu, J. Further proof that the spinal cord, and not the brain, mediates the immobility produced by inhaled anesthetics. Anesthesiology, 2009, 110(3), 591-595.
[http://dx.doi.org/10.1097/ALN.0b013e3181974bfd] [PMID: 19212265]
[144]
Kungys, G.; Kim, J.; Jinks, S.L.; Atherley, R.J.; Antognini, J.F. Propofol produces immobility via action in the ventral horn of the spinal cord by a GABAergic mechanism. Anesth. Analg., 2009, 108(5), 1531-1537.
[http://dx.doi.org/10.1213/ane.0b013e31819d9308] [PMID: 19372332]
[145]
Stabernack, C.; Zhang, Y.; Sonner, J.M.; Laster, M.; Eger, E.I., II Thiopental produces immobility primarily by supraspinal actions in rats. Anesth. Analg., 2005, 100(1), 128-136.
[http://dx.doi.org/10.1213/01.ANE.0000139353.97950.FA] [PMID: 15616066]
[146]
Jinks, S.L.; Dominguez, C.L.; Antognini, J.F. Drastic decrease in isoflurane minimum alveolar concentration and limb movement forces after thoracic spinal cooling and chronic spinal transection in rats. Anesthesiology, 2005, 102(3), 624-632.
[http://dx.doi.org/10.1097/00000542-200503000-00022] [PMID: 15731602]
[147]
Gilron, I.; Quirion, R.; Coderre, T.J. Pre- versus postinjury effects of intravenous GABAergic anesthetics on formalin-induced Fos immunoreactivity in the rat spinal cord. Anesth. Analg., 1999, 88(2), 414-420.
[http://dx.doi.org/10.1213/00000539-199902000-00036] [PMID: 9972767]
[148]
Jinks, S.L.; Antognini, J.F.; Martin, J.T.; Jung, S.; Carstens, E.; Atherley, R. Isoflurane, but not halothane, depresses c-fos expression in rat spinal cord at concentrations that suppress reflex movement after supramaximal noxious stimulation. Anesth. Analg., 2002, 95(6), 1622-1628.
[http://dx.doi.org/10.1097/00000539-200212000-00028] [PMID: 12456428]
[149]
Sommers, M.G.; Nguyen, N.K.; Veening, J.G.; Vissers, K.C.; Ritskes-Hoitinga, M.; van Egmond, J. Suppression of noxious-induced c-fos expression in the rat lumbar spinal cord by isoflurane alone or combined with fentanyl. Anesth. Analg., 2008, 106(4), 1303-1308.
[http://dx.doi.org/10.1213/ane.0b013e3181678831] [PMID: 18349210]
[150]
Hagihira, S.; Taenaka, N.; Yoshiya, I. Inhalation anesthetics suppress the expression of c-Fos protein evoked by noxious somatic stimulation in the deeper layer of the spinal cord in the rat. Brain Res., 1997, 751(1), 124-130.
[http://dx.doi.org/10.1016/S0006-8993(96)01398-4] [PMID: 9098575]
[151]
Takasusuki, T.; Yamaguchi, S.; Hamaguchi, S.; Yaksh, T.L. Effects of general anesthetics on substance P release and c-Fos expression in the spinal dorsal horn. Anesthesiology, 2013, 119(2), 433-442.
[http://dx.doi.org/10.1097/ALN.0b013e31829996b6] [PMID: 23708866]
[152]
Millan, M.J. Descending control of pain. Prog. Neurobiol., 2002, 66(6), 355-474.
[http://dx.doi.org/10.1016/S0301-0082(02)00009-6] [PMID: 12034378]
[153]
Lau, B.K.; Winters, B.L.; Vaughan, C.W. Opioid presynaptic disinhibition of the midbrain periaqueductal grey descending analgesic pathway. Br. J. Pharmacol., 2020, 177(10), 2320-2332.
[http://dx.doi.org/10.1111/bph.14982] [PMID: 31971607]
[154]
Yeung, J.C.; Yaksh, T.L.; Rudy, T.A. Concurrent mapping of brain sites for sensitivity to the direct application of morphine and focal electrical stimulation in the production of antinociception in the rat. Pain, 1977, 4(1), 23-40.
[http://dx.doi.org/10.1016/0304-3959(77)90084-7] [PMID: 927879]
[155]
Fields, H.L.; Vanegas, H.; Hentall, I.D.; Zorman, G. Evidence that disinhibition of brain stem neurones contributes to morphine analgesia. Nature, 1983, 306(5944), 684-686.
[http://dx.doi.org/10.1038/306684a0] [PMID: 6656868]
[156]
Mitchell, J.M.; Lowe, D.; Fields, H.L. The contribution of the rostral ventromedial medulla to the antinociceptive effects of systemic morphine in restrained and unrestrained rats. Neuroscience, 1998, 87(1), 123-133.
[http://dx.doi.org/10.1016/S0306-4522(98)00119-5] [PMID: 9722146]
[157]
Bajic, D.; Van Bockstaele, E.J.; Proudfit, H.K. Ultrastructural analysis of ventrolateral periaqueductal gray projections to the A7 catecholamine cell group. Neuroscience, 2001, 104(1), 181-197.
[http://dx.doi.org/10.1016/S0306-4522(01)00052-5] [PMID: 11311541]
[158]
Clark, F.M.; Proudfit, H.K. Projections of neurons in the ventromedial medulla to pontine catecholamine cell groups involved in the modulation of nociception. Brain Res., 1991, 540(1-2), 105-115.
[http://dx.doi.org/10.1016/0006-8993(91)90496-I] [PMID: 1711394]
[159]
Martin, W.J.; Gupta, N.K.; Loo, C.M.; Rohde, D.S.; Basbaum, A.I. Differential effects of neurotoxic destruction of descending noradrenergic pathways on acute and persistent nociceptive processing. Pain, 1999, 80(1-2), 57-65.
[http://dx.doi.org/10.1016/S0304-3959(98)00194-8] [PMID: 10204718]
[160]
Sawynok, J.; Reid, A. Effect of 6-hydroxydopamine-induced lesions to ascending and descending noradrenergic pathways on morphine analgesia. Brain Res., 1987, 419(1-2), 156-165.
[http://dx.doi.org/10.1016/0006-8993(87)90579-8] [PMID: 3119144]
[161]
Sawamura, S.; Kingery, W.S.; Davies, M.F.; Agashe, G.S.; Clark, J.D.; Kobilka, B.K.; Hashimoto, T.; Maze, M. Antinociceptive action of nitrous oxide is mediated by stimulation of noradrenergic neurons in the brainstem and activation of [alpha]2B adrenoceptors. J. Neurosci., 2000, 20(24), 9242-9251.
[http://dx.doi.org/10.1523/JNEUROSCI.20-24-09242.2000] [PMID: 11125002]
[162]
Kingery, W.S.; Sawamura, S.; Agashe, G.S.; Davies, M.F.; Clark, J.D.; Zimmer, A. Enkephalin release and opioid receptor activation does not mediate the antinociceptive or sedative/hypnotic effects of nitrous oxide. Eur. J. Pharmacol., 2001, 427(1), 27-35.
[http://dx.doi.org/10.1016/S0014-2999(01)01193-1] [PMID: 11553360]
[163]
Kubota, I.; Tsuboi, Y.; Shoda, E.; Kondo, M.; Masuda, Y.; Kitagawa, J.; Oi, Y.; Iwata, K. Modulation of neuronal activity in CNS pain pathways following propofol administration in rats: Fos and EEG analysis. Exp. Brain Res., 2007, 179(2), 181-190.
[http://dx.doi.org/10.1007/s00221-006-0779-x] [PMID: 17136530]
[164]
Wilson, T.D.; Valdivia, S.; Khan, A.; Ahn, H.S.; Adke, A.P.; Martinez Gonzalez, S.; Sugimura, Y.K.; Carrasquillo, Y. Dual and opposing functions of the central amygdala in the modulation of pain. Cell Rep., 2019, 29(2), 332-346.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.09.011] [PMID: 31597095]
[165]
Han, L.C.; Zhang, H.; Wang, W.; Wei, Y.Y.; Sun, X.X.; Yanagawa, Y.; Li, Y.Q.; Xu, L.X.; Wu, S.X. The effect of sevoflurane inhalation on gabaergic neurons activation: observation on the GAD67-GFP knock-in mouse. Anat. Rec. (Hoboken), 2010, 293(12), 2114-2122.
[http://dx.doi.org/10.1002/ar.21113] [PMID: 21046664]
[166]
Marota, J.J.; Crosby, G.; Uhl, G.R. Selective effects of pentobarbital and halothane on c-fos and jun-B gene expression in rat brain. Anesthesiology, 1992, 77(2), 365-371.
[http://dx.doi.org/10.1097/00000542-199208000-00021] [PMID: 1642355]
[167]
Li, T.; Li, Z.; Wan, H.; Tang, X.; Wang, H.; Chai, F.; Zhang, M.; Wang, B. Recurrence-associated long non-coding RNA LNAPPCC facilitates colon cancer progression via forming a positive feedback loop with PCDH7. Mol. Ther. Nucleic Acids, 2020, 20, 545-557.
[http://dx.doi.org/10.1016/j.omtn.2020.03.017] [PMID: 32330872]
[168]
Kozinn, J.; Mao, L.; Arora, A.; Yang, L.; Fibuch, E.E.; Wang, J.Q. Inhibition of glutamatergic activation of extracellular signal-regulated protein kinases in hippocampal neurons by the intravenous anesthetic propofol. Anesthesiology, 2006, 105(6), 1182-1191.
[http://dx.doi.org/10.1097/00000542-200612000-00018] [PMID: 17122581]
[169]
Miyashita, T.; Kikuchi, E.; Horiuchi, J.; Saitoe, M. Long-term memory engram cells are established by c-Fos/CREB transcriptional cycling. Cell Rep., 2018, 25(10), 2716-2728.e3.
[http://dx.doi.org/10.1016/j.celrep.2018.11.022] [PMID: 30517860]
[170]
Kidambi, S.; Yarmush, J.; Berdichevsky, Y.; Kamath, S.; Fong, W.; Schianodicola, J. Propofol induces MAPK/ERK cascade dependant expression of cFos and Egr-1 in rat hippocampal slices. BMC Res. Notes, 2010, 3, 201.
[http://dx.doi.org/10.1186/1756-0500-3-201] [PMID: 20637119]
[171]
Schreiber, S.S.; Tocco, G.; Shors, T.J.; Thompson, R.F. Activation of immediate early genes after acute stress. Neuroreport, 1991, 2(1), 17-20.
[http://dx.doi.org/10.1097/00001756-199101000-00004] [PMID: 1768844]
[172]
Brennan, P.A.; Hancock, D.; Keverne, E.B. The expression of the immediate-early genes c-fos, egr-1 and c-jun in the accessory olfactory bulb during the formation of an olfactory memory in mice. Neuroscience, 1992, 49(2), 277-284.
[http://dx.doi.org/10.1016/0306-4522(92)90095-J] [PMID: 1279452]
[173]
Lantéri-Minet, M.; Weil-Fugazza, J.; de Pommery, J.; Menétrey, D. Hindbrain structures involved in pain processing as revealed by the expression of c-Fos and other immediate early gene proteins. Neuroscience, 1994, 58(2), 287-298.
[http://dx.doi.org/10.1016/0306-4522(94)90035-3] [PMID: 8152540]
[174]
Smith, M.L.; Li, J.; Cote, D.M.; Ryabinin, A.E. Effects of isoflurane and ethanol administration on c-Fos immunoreactivity in mice. Neuroscience, 2016, 316, 337-343.
[http://dx.doi.org/10.1016/j.neuroscience.2015.12.047] [PMID: 26742790]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy