Skip to main content

Advertisement

Log in

Tuning of structural, elastic, luminescence, magnetic, and multiferroic properties of rare earth Ce3+ substituted strontium hexaferrite Ceramic magnetic nanomaterials for its industrial applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The rare earth element Cerium substituted Strontium hexaferrite SrFe12-xCexO19(x = 0.0–0.60), prepared using cost-effective sol–gel a citrate precursor auto-combustion technique at annealing temperature 850 °C. Systematic decrease in crystalline size (79.64–66.02 nm), strain, and systematic increase in cell volume with an increase in the composition of Cerium were found. TGA shows a total weight loss of 43%, while DTA depicts two endothermic peaks at 34 °C and 395 °C and one exothermic peak at 76 °C and thus proves helpful in analyzing the thermal behavior of SrFe12O19. FTIR spectrum shows shifting of the peak toward lower wave number, and hence decrease in force constant and bond length is observed. The largest and minimum value of force constant in tetrahedral and octahedral sites are found to be 262.987 N/m, 260.360 N/m, and 141.257 N/m, 139.973 N/m, respectively. Decrease in stiffness constant C11 (from 344.389 to 339.872), C12 (from 127.376 to 125.706 GPa) and elastic moduli, Y (from 275.60 to 271.991 GPa), B (from 199.713 to 197.094 GPa), G (108.50–107.083 GPa) is observed. PL spectra show four peaks in the visible region and an intense peak is observed for X = 0.40 composition. Visible region luminescence peaks may support its applications in opto-electronics and biological imaging. The highest saturation magnetization is obtained for SrFe11.80Ce0.20O19 hexaferrite sample of the order 54.24 emu/gm. The pattern of regular increment in coercivity is obtained from X = 0.00–0.40 with an order of 2421–5632 Oersted. In the SrFe12O19 sample, incorporation of Ce3+ composition profitably hinders the leakage current with maximal value of Pmax, Pr and Ec that are 14.13 \({\upmu }\) c/cm2, 50.84 \({\upmu }\) c/cm2 and 4.33171 kV/cm, respectively, for X = 0.60 composition and regular pattern increment is seen with increasing Ce3+ composition. Thus tuning of structural, magnetic, luminescence and ferroelectric properties of Strontium hexaferrite with Ce3+ substitution may help its uses as electronics and electrical material for its numerous applications in Electronics, Electrical and Environmental sectors.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.D.L. Chung, Electromagnetic interference shielding effectiveness of carbon materials. Carbon N. Y. 39(2), 279–285 (2001)

    Article  Google Scholar 

  2. Z. Ye, Z. Li, J.A. Roberts, P. Zhang, J.T. Wang, G.L. Zhao, Electromagnetic wave absorption properties of carbon nanotubes-epoxy composites at microwave frequencies. J. Appl. Phys. 108(5), 54315 (2010)

    Article  ADS  Google Scholar 

  3. J. Slama, A. Gruskova, R. Vıcen, S. Vıcenova, R. Dosoudil, J. Franek, Composite material with substituted Li ferrite for high-frequency applications. J. Magn. Magn. Mater. 254, 642–645 (2003)

    Article  ADS  Google Scholar 

  4. T. Inui, K. Konishi, K. Oda, Fabrications of broad-band RF-absorber composed of planar hexagonal ferrites. IEEE Trans. Magn. 35(5), 3148–3150 (1999)

    Article  ADS  Google Scholar 

  5. R.C. Pullar, “Progress in materials science hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57(7), 1191–1334 (2012)

    Article  Google Scholar 

  6. Y. Yang, J. Wang, Synthesis and characterization of a microwave absorbing material based on magnetoplumbite ferrite and graphite nanosheet. Mater. Lett. 124, 151–154 (2014)

    Article  Google Scholar 

  7. M. Siva kumara, A. Gedankena, W. Zhong, Y.W. Dub, D. Bhattacharya, Y. Yeshurun, I. Felner, J. Magn. Magn. Materials 268, 95–104 (2004)

    Article  ADS  Google Scholar 

  8. Y. Yang, X. Liu, IEEE Trans. Magn. 50, 1–6 (2014)

    ADS  Google Scholar 

  9. M.P. Sharrock, IEEE Trans. Magn. 25, 4374–4389 (1989)

    Article  ADS  Google Scholar 

  10. R. Kumar, R.K. Singh, M.K. Zope, M. Kar, Mater. Sci. Eng. B 220, 73–81 (2017)

    Article  Google Scholar 

  11. C.M. Fang, F. Kools, R. Metselaar, G. De, R.A. de Groot, J. Phys. Condens. Matter. 15, 6229 (2003)

    Article  ADS  Google Scholar 

  12. A. Ghasemi, J. Magn. Magn. Mater. 324, 1375–1380 (2012)

    Article  ADS  Google Scholar 

  13. L.S.I. Liyanage, S. Kim, Y.-K. Hong, J.-H. Park, S.C. Erwin, S.-G. Kim, J. Magn. Magn. Mater. 348, 75 (2013)

    Article  ADS  Google Scholar 

  14. W.-L. Song et al., Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon N. Y. 100, 109–117 (2016)

    Article  Google Scholar 

  15. G. Ferk et al., Monolithic magneto-optical nanocomposites of barium hexaferrite platelets in PMMA. Sci. Rep. 5, 11395 (2015)

    Article  ADS  Google Scholar 

  16. Y. Yang et al., Structural and magnetic properties of Sr1-xLaX Lax Fe12-x (Cu 0.5 Co 0.5) x O19 hexaferrites prepared by the solid-state reaction method. Bull. Mater. Sci. 39(1), 119–123 (2016)

    Article  Google Scholar 

  17. X. Liu et al., “Analysis of magnetic disaccommodation in La3þ–Co2þ-substituted strontium ferrites. J. Magn. Magn. Mater. 321(16), 2421–2424 (2009)

    Article  ADS  Google Scholar 

  18. S. Ounnunkad, Improving magnetic properties of barium hexaferrites by La or Pr substitution. Solid State Commun. 138(9), 472–475 (2006)

    Article  ADS  Google Scholar 

  19. M. Zhang, Q. Liu, G. Zhu, S. Xu, Appl. Phys. A 125, 191 (2019)

    Article  ADS  Google Scholar 

  20. M. Schmidt, M. Hofmann, S.J. Campbell, J. Phys. Condens. Matter 15, 8691–8701 (2003)

    Article  ADS  Google Scholar 

  21. R. Carey, P.A. Gago-Sandoval, D.M. Newman, B.W.J. Thomas, J. Appl. Phys. 75, 6789 (1991)

    Article  ADS  Google Scholar 

  22. Z. Mosleh, P. Kameli, M. Ranjbar, H. Salamati, Ceram. Int. 40, 7279–7284 (2014)

    Article  Google Scholar 

  23. F.L. Wei, H.C. Fang, C.K. Ong, C.S. Wang, Z. Yang, J. Appl. Phys. 87, 8636–8639 (2000)

    Article  ADS  Google Scholar 

  24. M.A. Almessiere, Y. Slimani, A. Baykal, Structural and magnetic properties of Ce-doped strontium hexaferrite. Ceram. Int. 44, 10470–10477 (2018)

    Article  Google Scholar 

  25. V.R. Caffarena, Co2Z Hexaferrite obtained by the citrate precursor method in an inert atmosphere. Rev Matéria 13, 374–379 (2008)

    Google Scholar 

  26. H. Yanbing, S. Jian, S. Lina, T. Quan, L. Qin, J. Hongxiao, J. Dingfeng, B. Hong, G. Hongliang, W. Xinqing, J. Alloys Compd. 486, 348–351 (2009)

    Article  Google Scholar 

  27. J. Baseri, R. Naghizadeh, H.R. Rezaie, F. Golestanifard, M. Golmohammad, A comparative study on citrate sol-gel and combustion synthesis methods of CoAl2O4 spinel. Int. J. Appl. Ceram. Technol. 17, 1–7 (2020)

    Article  Google Scholar 

  28. S. Singhal, A.N. Garg, K. Chandra, J. Magn. Magn. Mater. 285, 193–198 (2005)

    Article  ADS  Google Scholar 

  29. M.J. Iqbal, M.N. Ashiq, “Physical and electrical properties of Zr–Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem. Eng. J. 136(2–3), 383–389 (2008)

    Article  Google Scholar 

  30. M.G. Hasab, S.A.S. Ebrahimi, A. Badiei, An investigation on physical properties of strontium hexaferrite nanopowder synthesized by a sol–gel auto-combustion process with addition of cationic surfactant. J. Eur. Ceram. Soc. 27(13–15), 3637–3640 (2007)

    Article  Google Scholar 

  31. G. Gonzaleza, J.R. Pargab, H.A. Morenoc, J. Ramosa, F. Martinezd, R. Martíneze, V. Vazquezf, J. Chem. Res. 40, 110–113 (2016)

    Article  Google Scholar 

  32. M. Zayat, D. Levy, Chem. Mater. 12, 2763 (2000)

    Article  Google Scholar 

  33. L. Li, C. Xiang, X. Liang, B. Hao, Synth. Mter. 160, 28–34 (2010)

    Article  Google Scholar 

  34. F. Kools, A. Morel, R. Grossinger, J.M. Le Breton, P. Tenuad, J. Magn. Magn. Mater. 1270, 242 (2002)

    Google Scholar 

  35. D. Srivastava, I. Lee, Adv. Mater. 18, 2471–2475 (2006)

    Article  Google Scholar 

  36. V.V. Pankov, M. Pernet, P. Germi, P. Mollard, J. Magn. Magn. Mater. 120, 69 (1993)

    Article  ADS  Google Scholar 

  37. Y. Jing, L. Jia, Y. Zheng, H. Zhang, RSC Adv. 9, 33388–33394 (2019)

    Article  ADS  Google Scholar 

  38. Y. Senzaki, J. Caruso, M.J. Hampden-Smith, T.T. Kodas, L.M. Wang, J. Am. Ceram. Soc. 78(11), 2973–2976 (1995)

    Article  Google Scholar 

  39. C. Surig, K.A. Hempel, D. Bonnenberg, J. IEEE Trans. Magn. 30, 4092–4094 (1994)

    Article  ADS  Google Scholar 

  40. S. Kanagesan, S. Jesurani, R. Velmurugan, S. Prabu, T. Kalaivani, Magnetic properties of Ni–Co doped barium strontium hexaferrite. J. Mater. Sci. Mater. Electron. 23(8), 1575–1579 (2012)

    Article  Google Scholar 

  41. S. Chang, S. Kangning, C. Pengfei, Microwave absorption properties of Cesubstituted M-type barium ferrite. J. Magn. Magn. Mater. 324(5), 802–805 (2012)

    Article  ADS  Google Scholar 

  42. S.B. Narang, P. Kaur, S. Bahel, Complex permittivity, permeability and microwave absorbing properties of Co–Ti substituted strontium hexaferrite. Mater. Sci. 34(1), 19–24 (2016)

    Google Scholar 

  43. S.S. Yttinahalli, S.B. Kapatkar, Adv. Sci. Focus. 2, 42–46 (2014)

    Article  Google Scholar 

  44. H.M. Ledbetter, J. Phys. chem. Ref. Data. 6, 1181–1203 (1977)

    Article  ADS  Google Scholar 

  45. S.A. Saafan, T.M. Meaz, E.H. EI-Ghazzawy, M.K. EI Nimr, M.M. Ayd, M. Bakr, J. Mag. Mater. 322, 2369–2374 (2010)

  46. S.E. Shirsath, S.M. Patange, R.H. Kadam, M.L. Mane, K.M. Jadhav, J. Mole. Struct. 1024, 77 (2012)

    Article  ADS  Google Scholar 

  47. W.A. Wooster, Rep. Prog. Phys. 16, 62 (1953)

    Article  ADS  Google Scholar 

  48. S.M. Patange, S.E. Shirsath, S.P. Jadhav, V.S. Hogade, S.R. Kamble, K.M. Jadhav, J. Mol. Struct. 1038, 40–44 (2013)

    Article  ADS  Google Scholar 

  49. I. Fainshtein, Russ. Phys. J. 29(10), 45–49 (1986)

    Google Scholar 

  50. G.B. Teh, Y.C. Wong, J. Wang, S.G. Tan, B. Samini, Mater. Sci. Forum 654–656, 1134–1137 (2010)

    Article  Google Scholar 

  51. P. Bahera, S. Ravi, J. Supercond. Nov. Magn. 30, 1453 (2016)

    Article  Google Scholar 

  52. Q. Fang, H. Cheng, K. Huang, J. Wang, R. Li, Y. Jiao, J. Magn. Magn. Mater. 294, 281 (2005)

    Article  ADS  Google Scholar 

  53. S.M. Mirkazemi, S. Alamolhoda, Z. Ghiami, Microstructure and magnetic properties of SrFe12O19 Nano-sized powders prepared by sol-gel auto-combustion method with CTAB surfactant. J. Supercond. Nov. Magn. 28, 1551–1558 (2015)

    Article  Google Scholar 

  54. S. Verma, O.P. Pandey, A. Paesano Jr., P. Sharma, Structural and magnetic properties of Co-Ti substituted barium hexaferrite thick films. J. Alloys Compd. 678, 284–289 (2016)

    Article  Google Scholar 

  55. G. Tan, X. Chen, Synthesis, structures, and multiferroic properties of strontium hexaferrite ceramics. J. Electron. Mater. 42(5), 906–911 (2013)

    Article  ADS  Google Scholar 

  56. V. Turchenko, A. Trukhanov, S. Trukhanov, M. Balasoiu, N. Lupu, Correlation of crystalline and magnetic structures of barium ferrites withdual ferroic properties. J. Magn. Magn. Mater. 477, 9–16 (2019)

    Article  ADS  Google Scholar 

  57. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, A.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich, V.M. Ivanov, T.I. Zubar, M. Salem, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, Polarization origin and iron positions in indium doped barium hexaferrites. Ceram. Int. 44, 290–300 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Aryabhatta Knowledge University, Patna and Dept. of Education, Govt. of Bihar for having such an amenity related to nanostructured material synthesis and characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S.S., Singh, R.K., Verma, P.K. et al. Tuning of structural, elastic, luminescence, magnetic, and multiferroic properties of rare earth Ce3+ substituted strontium hexaferrite Ceramic magnetic nanomaterials for its industrial applications. Appl. Phys. A 127, 754 (2021). https://doi.org/10.1007/s00339-021-04904-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04904-z

Keywords

Navigation