Skip to main content
Log in

Kinetic Analysis and Resolution of Overlapping EPR Spectra

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

A new method for the resolution and quantitative kinetic analysis of overlapping electron paramagnetic (EPR) spectra, based on a combination of smoothing by B-splines and/or discrete cosine transformation and linear algebra methods for finding eigenvalues and eigenvectors of the covariance matrix using the Frobenius normal form with subsequent final basis adjustment by the Moore–Penrose pseudo-inverse matrix, is proposed. This algorithm does not require the use of the time-consuming multiple iterations of the least squares method. Our approach has been tested on several specific chemical systems including stable organic radicals and paramagnetic V4+ and VO2+ ions. In all the cases, the analysis of experimental EPR spectra demonstrated that the new approach produces good results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.H. Lawton, E.A. Sylvestre, Technometrics 13, 617 (1971)

    Article  Google Scholar 

  2. A. De Juan, R. Tauler, Anal. Chim. Acta 1145, 59 (2021)

    Article  Google Scholar 

  3. O.S. Borgen, B.R. Kowalski, Anal. Chim. Acta 174, 1–26 (1985)

    Article  Google Scholar 

  4. M. Abou Fadel, A. de Juan, N. Touati, H. Vezin, L. Duponchel, J. Magn. Reson. 248, 27 (2014)

    Article  ADS  Google Scholar 

  5. A.I. Kulak, S.O. Travin, A.I. Kokorin, Appl. Magn. Reson. 51, 1005 (2020)

    Article  Google Scholar 

  6. T.K. Karakach, R. Knight, E.M. Lenz, M.R. Viant, J.A. Walter, Magn. Reson. Chem. 47, S105 (2009)

    Article  Google Scholar 

  7. Y.B. Monakhova, S.A. Astakhov, A. Kraskov, S.P. Mushtakova, Chemometr. Intel. Lab. Systems 103, 108 (2010)

    Article  Google Scholar 

  8. H. Parastar, M. Jalali-Heravi, R. Tauler, Trends Analyt. Chem. 31, 134 (2012)

    Article  Google Scholar 

  9. A. de Juan, R. Tauler, Crit. Rev. Anal. Chem. 36, 163 (2006)

    Article  Google Scholar 

  10. P. Tomza, W. Wrzeszcz, M.A. Czarnecki, J. Molec, Liquids 276, 947 (2019)

    Article  Google Scholar 

  11. Y.B. Monakhova, A.M. Tsikin, T. Kuballa, D.W. Lachenmeier, S.P. Mushtakova, Magn. Reson. Chem. 52, 231 (2014)

    Article  Google Scholar 

  12. D. Erdogmus, K.E. Hild, Y.N. Rao, J.C. Príncipe, Neural Comput. 16, 1235 (2004)

    Article  Google Scholar 

  13. S. Amari, A. Cichocki, H.H. Yang, Proc Intern. Symp. Nonlinear Theory Appl. I, 37 (1995)

    Google Scholar 

  14. Y.B. Monakhova, S.P. Mushtakova, Zh. Analit, Khimii 72, 119 (2017). (in Russian)

    Google Scholar 

  15. Y.B. Monakhova, S.A. AStakhov, S.P. Mushtakova, J. Anal. Chem. 64, 495 (2009). (in Russian)

    Article  Google Scholar 

  16. Y.B. Monakhova, S.A. Stakhov, S.P. Mushtakova, L.A. Gribov, J. Anal. Chem. 66, 361 (2011). (in Russian)

    Google Scholar 

  17. Y.B. Monakhova, I.V. Kuznetsova, S.P. Mushtakova, Zh. Analit, Khimii 66, 582 (2011). (in Russian)

    Google Scholar 

  18. E.V. Shikin, L.I. Plis, Curves and Surface on a Computer Screen (User guide to splines (Dialog-MIFI), Moscow, 1996). (in Russian)

    Google Scholar 

  19. M.G. Cox, J. Inst. Maths. Appl. 15, 95 (1972)

    Article  Google Scholar 

  20. C. de Boor, J. Approx. Theory 6, 52 (1972)

    Google Scholar 

  21. K. Lee, Basics of CAD/CAM/CAE (Piter, St. Peterburg, 2004). (in Russian)

    Google Scholar 

  22. V.M. Verzhbitskiy, Ocнoвы Чиcлeнныx Мeтoдoв (High School, Moscow, 2009). (in Russian)

    Google Scholar 

  23. L. Piegl, W. Tiller, The NURBS Book, 2nd edn. (Springer, New York, 1996)

    MATH  Google Scholar 

  24. A. Efremov, V. Havran, H. Seidel, Robust and Numerically Stable Bezier Clipping Method for Ray Tracing NURBS Surfaces (Comp. Sci. Dept., Univ Saarland, Germany, 2005)

    Book  Google Scholar 

  25. D. Garcia, Comput. Stat. Data Anal. 54, 1167 (2010)

    Article  Google Scholar 

  26. A.I. Kokorin, V.I. Pergushov, A.I. Kulak, Catal. Lett. 150, 263 (2020)

    Article  Google Scholar 

  27. R.G. Kozin, Algorithms of Numerical Methods of Linear Algebra and Their Software Implementation (NIYaU MIFI, Moscow, 2012). (in Russian)

    Google Scholar 

  28. I.K. Kostin, Voprosy Radioelektroniki, ser. RLT, No. 1, 130 (2004), eLIBRARY id: 9178222

  29. J.C.A. Barata, M.S. Hussein, J. Phys. 42, 146 (2011)

    Google Scholar 

  30. V.N. Katsikis, D. Pappas, A. Petralias, Appl. Math. Comp. 217, 9828 (2011)

    Article  Google Scholar 

  31. V.V. Shilovskikh, A.A. Timralieva, P.V. Nesterov, A.S. Novikov, P.A. Sitnikov, E.A. Konstantinova, A.I. Kokorin, E.V. Skorb, Chem. Eur. J. 26, 16603 (2020)

    Article  Google Scholar 

  32. V.V. Shilovskikh, A.A. Timralieva, E.V. Belogub, E.A. Konstantinova, A.I. Kokorin, E.V. Skorb, Appl. Magn. Reson. 51, 939 (2020)

    Article  Google Scholar 

  33. A.I. Kokorin, S.O. Travin, I.V. Kolbanev, E.N. Degtyarev, A.B. Borunova, G.A. Vorobieva, A.A. Dubinsky, A.N. Streletskii, Appl. Magn. Reson. (2021). https://doi.org/10.1007/s00723-021-01314-5

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed within the framework of the Program of Fundamental Research of the Russian Academy of Sciences on the research issue of FRCCP RAS № 0082-2019-0014 (State reg. AAAA-A20-120021390044-2)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Kokorin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Travin, S.O., Kokorin, A.I. Kinetic Analysis and Resolution of Overlapping EPR Spectra. Appl Magn Reson 53, 1069–1088 (2022). https://doi.org/10.1007/s00723-021-01426-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01426-y

Navigation