Skip to main content
Log in

Lactobacillus rhamnosus Affects Rat Peritoneal Cavity Cell Response to Stimulation with Gut Microbiota: Focus on the Host Innate Immunity

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Gut microbiota contribute to shaping the immune repertoire of the host, whereas probiotics may exert beneficial effects by modulating immune responses. Having in mind the differences in both the composition of gut microbiota and the immune response between rats of Albino Oxford (AO) and Dark Agouti (DA) rat strains, we investigated if intraperitoneal (i.p.) injection of live Lactobacillus rhamnosus (LB) may influence peritoneal cavity cell response to in vitro treatments with selected microbiota in the rat strain-dependent manner. Peritoneal cavity cells from AO and DA rats were lavaged two (d2) and seven days (d7) following i.p. injection with LB and tested for NO, urea, and H2O2 release basally, or upon in vitro stimulation with autologous E.coli and Enterococcus spp. Whereas the single i.p. injection of LB nearly depleted resident macrophages and increased the proportion of small inflammatory macrophages and monocytes on d2 in both rat strains, greater proportion of MHCIIhiCD163 and CCR7+ cells and increased NO/diminished H2O2 release in DA compared with AO rats suggest a more intense inflammatory priming by LB in this rat strain. Even though E.coli- and/or Enterococcus spp.-induced rise in H2O2 release in vitro was abrogated by LB in cells from both rat strains, LB prevented microbiota-induced increase in NO/urea ratio only in cells from AO and augmented it in cells from DA rats. Thus, the immunomodulatory properties may not be constant for particular probiotic bacteria, but shaped by innate immunity of the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

All raw data are available upon request, but are not otherwise made public.

Code Availability

Not applicable.

References

  1. Cani, P.D., M. Osto, L. Geurts, and A. Everard. 2012. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3 (4): 279–288. https://doi.org/10.4161/gmic.19625.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vrakas, S., K.C. Mountzouris, G. Michalopoulos, G. Karamanolis, G. Papatheodoridis, C. Tzathas, and M. Gazouli. 2017. Intestinal bacteria composition and translocation of bacteria in inflammatory bowel disease. PLoS One. https://doi.org/10.1371/journal.pone.0170034.

  3. Lerner, A., and T. Matthias. 2015. Rheumatoid arthritis-celiac disease relationship: Joints get that gut feeling. Autoimmunity Reviews 14: 1038–1047. https://doi.org/10.1016/j.autrev.2015.07.007.

    Article  PubMed  Google Scholar 

  4. Clarke, T.B., K.M. Davis, E.S. Lysenko, A.Y. Zhou, Y. Yu, and J.N. Weiser. 2010. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nature Medicine 16 (2): 228–231. https://doi.org/10.1038/nm.2087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Emani, R., C. Alam, S. Pekkala, S. Zafar, M.R. Emani, and A. Hanninen. 2015. Peritoneal cavity is a route for gut-derived microbial signals to promote autoimmunity in non-obese diabetic mice. Scandinavian Journal of Immunology 81: 102–109. https://doi.org/10.1111/sji.12253.

    Article  CAS  PubMed  Google Scholar 

  6. Blagojević, V., V. Kovačević-Jovanović, I. Ćuruvija, R. Petrović, I. Vujnović, V. Vujić, and S. Stanojević. 2018. Rat strain differences in peritoneal immune cell response to selected gut microbiota: A crossroad between tolerance and autoimmunity? Life Sciences 197: 147–157. https://doi.org/10.1016/j.lfs.2018.02.011.

    Article  CAS  PubMed  Google Scholar 

  7. Miljkovic, D., S. Stosic-Grujicic, M. Markovic, M. Momcilovic, Z. Ramic, D. Maksimovic-Ivanic, S. Mijatovic, D. Popadic, I. Cvetkovic, and M. Mostarica-Stojkovic. 2006. Strain difference in susceptibility to experimental autoimmune encephalomyelitis between Albino Oxford and Dark Agouti rats correlates with disparity in production of IL-17, but not nitric oxide. Journal of Neuroscience Research 84: 379–388. https://doi.org/10.1002/jnr.20883.

    Article  CAS  PubMed  Google Scholar 

  8. Miletić, T., V. Kovačević-Jovanović, V. Vujić, S. Stanojević, K. Mitić, M. Lazarević-Macanović, and M. Dimitrijević. 2007. Reactive oxygen species (ROS), but not nitric oxide (NO) contribute to strain differences in the susceptibility to experimental arthritis in rats. Immunobiology 212: 95–105. https://doi.org/10.1016/j.imbio.2006.11.012.

    Article  CAS  PubMed  Google Scholar 

  9. Stanisavljević, S., J. Lukić, M. Momčilović, M. Miljković, B. Jevtić, M. Kojić, N. Golić, M. Mostarica-Stojković, and D. Miljković. 2016. Gut-associated lymphoid tissue, gut microbes and susceptibility to experimental autoimmune encephalomyelitis. Benef Microbes 7 (3): 363–373. https://doi.org/10.3920/BM2015.0159.

    Article  PubMed  Google Scholar 

  10. Stanisavljević, S., J. Lukić, S. Soković, S. Mihajlovic, M.M. Mostarica-Stojković, D. Miljković, and N. Golić. 2016. Correlation of gut microbiota composition with resistance to experimental autoimmune encephalomyelitis in rats. Frontiers in Microbiology 7: 2005. https://doi.org/10.3389/fmicb.2016.02005.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stanisavljević, S., M. Dinić, B. Jevtić, N. Đedović, M. Momčilović, J. Đokić, N. Golić, M. Mostarica Stojković, and Đ Miljković. 2018. Gut microbiota confers resistance of albino oxford rats to the induction of experimental autoimmune encephalomyelitis. Frontiers in Immunology 9: 942. https://doi.org/10.3389/fimmu.2018.00942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim, K.W., J.W. Williams, Y.T. Wang, S. Ivanov, S. Gilfillan, M. Colonna, H.W. Virgin, E.L. Gautier, and G.J. Randolph. 2016. MHCII+ resident peritoneal and pleural macrophages rely on IRF4 for development from circulating monocytes. Journal of Experimental Medicine 213 (10): 1951–1959. https://doi.org/10.1084/jem.20160486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stanojević, S., K. Mitić, V. Vujić, V. Kovačević-Jovanović, and M. Dimitrijević. 2007. The influence of stress and methionine-enkephalin on macrophage functions in two inbred rat strains. Life Sciences 80: 901–909. https://doi.org/10.1016/j.lfs.2006.11.019.

    Article  CAS  PubMed  Google Scholar 

  14. Stanojević, S., K. Mitić, V. Vujić, V. Kovačević-Jovanović, and M. Dimitrijević. 2007. Exposure to acute physical and psychological stress alters the response of rat macrophages to corticosterone, neuropeptide Y and beta-endorphin. Stress 10: 65–73. https://doi.org/10.1080/10253890601181289.

    Article  CAS  PubMed  Google Scholar 

  15. Stanojević, S., N. Kuštrimović, K. Mitić, T. Miletić, V. Vujić, V. Kovačević-Jovanović, and M. Dimitrijević. 2008. The effects of corticosterone and beta-endorphin on adherence, phagocytosis and hydrogen peroxide production of macrophages isolated from Dark Agouti rats exposed to stress. NeuroImmunoModulation 15: 108–116. https://doi.org/10.1159/000148193.

    Article  CAS  PubMed  Google Scholar 

  16. Stanojević, S., I. Ćuruvija, V. Blagojević, R. Petrović, V. Vujić, and M. Dimitrijević. 2016. Strain-dependent response to stimulation in middle-aged rat macrophages: A quest after a useful indicator of healthy aging. Experimental Gerontology 85: 95–107. https://doi.org/10.1016/j.exger.2016.10.005.

    Article  CAS  PubMed  Google Scholar 

  17. Yamashita, M., K. Matsumoto, T. Endo, K. Ukibe, T. Hosoya, Y. Matsubara, H. Nakagawa, F. Sakai, and T. Miyazaki. 2017. Preventive effect of Lactobacillus helveticus SBT2171 on collagen-induced arthritis in mice. Frontiers in Microbiology 8: 1159. https://doi.org/10.3389/fmicb.2017.01159.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yamashita, M., K. Ukibe, Y. Matsubara, T. Hosoya, F. Sakai, S. Kon, Y. Arima, M. Murakami, H. Nakagawa, and T. Miyazaki. 2018. Lactobacillus helveticus SBT2171 attenuates experimental autoimmune encephalomyelitis in mice. Frontiers in Microbiology 8: 2596. https://doi.org/10.3389/fmicb.2017.02596.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Molina, V., M. Médici, J. Villena, G. Font, and M.P. Taranto. 2016. Dietary supplementation with probiotic strain improves immune-health in aged mice. Open Journal of Immunology 6: 73–78. https://doi.org/10.4236/oji.2016.63008.

    Article  CAS  Google Scholar 

  20. Tejada-Simon, M.V., Z. Ustunol, and J.J. Pestka. 1999. Ex vivo effects of lactobacilli, streptococci, and bifidobacteria ingestion on cytokine and nitric oxide production in a murine model. Journal of Food Protection 62 (2): 162–169. https://doi.org/10.4315/0362-028x-62.2.162.

    Article  CAS  PubMed  Google Scholar 

  21. Kato, I., T. Yokokura, and M. Mutai. 1983. Macrophage activation by Lactobacillus casei in mice. Microbiology and Immunology 27 (7): 611–618. https://doi.org/10.1111/j.1348-0421.1983.tb00622.x.

    Article  CAS  PubMed  Google Scholar 

  22. Kato, I., T. Yokokura, and M. Mutai. 1988. Correlation between increase in Ia-bearing macrophages and induction of T cell-dependent antitumor activity by Lactobacillus casei in mice. Cancer Immunology, Immunotherapy 26: 215–221. https://doi.org/10.1007/BF00199932.

    Article  CAS  PubMed  Google Scholar 

  23. Perdigon, G., M.E. de Macias, S. Alvarez, G. Oliver, and A.A. de Ruiz Holgado. 1986. Effect of perorally administered lactobacilli on macrophage activation in mice. Infection and Immunity 53 (2): 404–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miake, S., K. Nomoto, T. Yokokura, Y. Yoshikai, M. Mutai, and K. Nomoto. 1985. Protective effect of Lactobacillus casei on Pseudomonas aeruginosa infection in mice. Infec Immun 48: 480–485.

    Article  CAS  Google Scholar 

  25. Bautista-Garfias, C.R., O. Ixta, M. Orduña, F. Martínez, B. Aguilar, and A. Cortés. 1999. Enhancement of resistance in mice treated with Lactobacillus casei: Effect on Trichinella spiralis infection. Veterinary Parasitology 80 (3): 251–260. https://doi.org/10.1016/s0304-4017(98)00210-6.

    Article  CAS  PubMed  Google Scholar 

  26. Tomioka, H., K. Sato, and H. Saito. 1992. The protective activity of immunostimulants against Listeria monocytogenes infection in mice. J Med Microbio 36 (2): 112–116. https://doi.org/10.1099/00222615-36-2-112.

    Article  CAS  Google Scholar 

  27. Bautista-Garfias, C.R., M.B. Gomez, B.R. Aguilar, O. Ixta, F. Martinez, and J. Mosqueda. 2005. The treatment of mice with Lactobacillus casei induces protection against Babesia microti infection. Parasitology Research 97: 472–477. https://doi.org/10.1007/s00436-005-1475-7.

    Article  CAS  PubMed  Google Scholar 

  28. Foligné, B., C. Grangette, and B. Pot. 2005. Probiotics in IBD: Mucosal and systemic routes of administration may promote similar effects. Gut 54 (5): 727–728.

    PubMed  PubMed Central  Google Scholar 

  29. Inic-Kanada, A., M. Stojanovic, E. Marinkovic, E. Becker, E. Stein, I. Lukic, R. Djokic, N. Schuerer, J.H. Hegemann, and T. Barisani-Asenbauer. 2016. Probiotic adjuvant Lactobacillus rhamnosus enhances specific immune responses after ocular mucosal immunization with chlamydial polymorphic membrane protein C. PLoS ONE 11: e0157875. https://doi.org/10.1371/journal.pone.0157.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stanojević, S., V. Blagojević, I. Ćuruvija, K. Veljović, S. Soković Bajić, J. Kotur-Stevuljević, A. Bogdanović, R. Petrović, I. Vujnović, V. Kovačević-Jovanović. 2018. Oral treatment with Lactobacillus rhamnosus 64 during the early postnatal period improves the health of adult rats with TNBS-induced colitis Journal of Functional Foods 48, 92–105. https://doi.org/10.1016/j.jff.2018.07.014

  31. Martarelli, D., M.C. Verdenelli, S. Scuri, M. Cocchioni, S. Silvi, C. Cecchini, and P. Pompei. 2011. Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training. Current Microbiology 62: 1689–1696. https://doi.org/10.1007/s00284-011-9915-3.

    Article  CAS  PubMed  Google Scholar 

  32. Hiramatsu, Y., A. Hosono, T. Konno, Y. Nakanishi, M. Muto, A. Suyama, S. Hachimura, R. Sato, K. Takahashi, and S. Kaminogawa. 2011. Orally administered Bifidobacterium triggers immune responses following capture by CD11c+ cells in Peyer’s patches and cecal patches. Cytotechnology 63 (3): 307–317. https://doi.org/10.1007/s10616-011-9349-6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kovačević-Jovanović, V., T. Miletić, S. Stanojević, K. Mitić, and M. Dimitrijević. 2015. Immune response to gut Escherichia coli and susceptibility to adjuvant arthritis in the rats. Acta Microbiologica et Immunologica Hungarica 62: 1–19. https://doi.org/10.1556/AMicr.62.2015.1.1.

    Article  CAS  PubMed  Google Scholar 

  34. Pereyra, B.S., R. Falcoff, E. Falcoff, and D. Lemonnier. 1991. Interferon induction by Lactobacillus bulgaricus and Streptococcus thermophilus in mice. European Cytokine Network 2 (4): 299–303.

    CAS  PubMed  Google Scholar 

  35. Gill, H.S., Q. Shu, H. Lin, K.J. Rutherfurd, and M.L. Cross. 2001. Protection against translocating Salmonella typhimurium infection in mice by feeding the immuno-enhancing probiotic Lactobacillus rhamnosus strain HN001. Medical Microbiology and Immunology 190: 97–104. https://doi.org/10.1007/s004300100095.

    Article  CAS  PubMed  Google Scholar 

  36. Polfliet, M.M., B.O. Fabriek, W.P. Daniëls, C.D. Dijkstra, and T.K. van den Berg. 2006. The rat macrophage scavenger receptor CD163: Expression, regulation and role in inflammatory mediator production. Immunobiology 6: 419–425. https://doi.org/10.1016/j.imbio.2006.05.015.

    Article  CAS  Google Scholar 

  37. Gautier, E.L., T. Shay, J. Miller, M. Greter, C. Jakubzick, S. Ivanov, J. Helft, A. Chow, K.G. Elpek, S. Gordonov, A.R. Mazloom, A. Ma'ayan, W.J.Chua, T.H. Hansen, S.J. Turley, M. Merad and G.J. Randolph. 2012. Immunological genome consortium. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13(11), 1118–1128. doi: https://doi.org/10.1038/ni.2419.

  38. Donnelly, S., S.M. O’Neill, M. Sekiya, G. Mulcahy, and J.P. Dalton. 2005. Thioredoxin peroxidase secreted by Fasciola hepatica induces the alternative activation of macrophages. Infection and Immunity 73: 166–173. https://doi.org/10.1128/IAI.73.1.166-173.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pick, E., and D. Mizel. 1981. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. Journal of Immunological Methods 46 (2): 211–226. https://doi.org/10.1016/00221759(81)90138-1.

    Article  CAS  PubMed  Google Scholar 

  40. Johnston, R.B., Jr., and S. Kitagawa. 1985. Molecular basis for the enhanced respiratory burst of activated macrophages. Federation Proceedings 14: 2927–2932.

    Google Scholar 

  41. Green, L.C., D.A. Wagner, J. Glogowski, P.L. Skipper, J.S. Wishnok, and S.R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry 126: 131–138. https://doi.org/10.1016/0003-2697(82)90118-X.

    Article  CAS  PubMed  Google Scholar 

  42. Corraliza, I.M., M.L. Campo, G. Soler, and M. Modolell. 1994. Determination of arginase activity in macrophages: A micromethod. Journal of Immunological Methods 174: 231–235. https://doi.org/10.1016/0022-1759(94)90027-2.

    Article  CAS  PubMed  Google Scholar 

  43. Wynn, T.A., L. Barron, R.W. Thompson, S.K. Madala, M.S. Wilson, A.W. Cheever, and T. Ramalingam. 2011. Quantitative assessment of macrophage functions in repair and fibrosis. Current Protocols in Immunology 14: 22. https://doi.org/10.1002/0471142735.im1422s93.

    Article  PubMed  Google Scholar 

  44. Barth, M.W., J.A. Hendrzak, M.J. Melnicoff, and P.S. Morahan. 1995. Review of the macrophage disappearance reaction. Journal of Leukocyte Biology 57: 361–367. https://doi.org/10.1002/jlb.57.3.361.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, N., R.S. Czepielewski, N.N. Jarjour, E.C. Erlich, E. Esaulova, B.T. Saunders, S.P. Grover, A.C. Cleuren, G.J. Broze, B.T. Edelson, N. Mackman, B.H. Zinselmeyer, and G.J. Randolph. 2019. Expression of factor V by resident macrophages boosts host defense in the peritoneal cavity. Journal of Experimental Medicine 216 (6): 1291–1300. https://doi.org/10.1084/jem.20182024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Janssen, W.J., and P.M. Henson. 2012. Cellular regulation of the inflammatory response. Toxicologic Pathology 40 (2): 166–173. https://doi.org/10.1177/0192623311428477.

    Article  CAS  PubMed  Google Scholar 

  47. Davies, L.C., M. Rosas, S.J. Jenkins, C.T. Liao, M.J. Scurr, F. Brombacher, D.J. Fraser, J.E. Allen, S.A. Jones, and R.R. Taylor. 2013. Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nature Communications 4: 1886. https://doi.org/10.1038/ncomms2877.

    Article  CAS  PubMed  Google Scholar 

  48. Ivanov, S., A. Gallerand, M. Gros, M.I. Stunault, J. Merlin, N. Vaillant, L. Yvan-Charvet, and R.R. Guinamard. 2019. Mesothelial cell CSF1 sustains peritoneal macrophage proliferation. European Journal of Immunology 49: 2012–2018. https://doi.org/10.1002/eji.201948164.

    Article  CAS  PubMed  Google Scholar 

  49. Campbell, S.M., J.A. Knipper, D. Ruckerl, C.M. Finlay, N. Logan, C.M. Minutti, M. Mack, S.J. Jenkins, M.D. Taylor and J.E. Allen. 2018. Myeloid cell recruitment versus local proliferation differentiates susceptibility from resistance to filarial infection. Elife 7: pii: e30947. https://doi.org/10.7554/eLife.30947.

  50. Moghaddami, M., L.G. Cleland, G. Radisic, and G. Mayrhofer. 2007. Recruitment of dendritic cells and macrophages during T cell-mediated synovial inflammation. Arthritis Research & Therapy 9 (6): R120. https://doi.org/10.1186/ar2328.

    Article  CAS  Google Scholar 

  51. Lim, J.E., E. Chung, and Y. Son. 2017. A neuropeptide, Substance-P, directly induces tissue-repairing M2 like macrophages by activating the PI3K/Akt/mTOR pathway even in the presence of IFNγ. Science and Reports 7 (1): 9417. https://doi.org/10.1038/s41598-017-09639-7.

    Article  CAS  Google Scholar 

  52. Badylak, S.F., J.E. Valentin, A.K. Ravindra, G.P. McCabe, and A.M. Stewart-Akers. 2008. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Engineering Part A 14 (11): 1835–1842. https://doi.org/10.1089/ten.tea.2007.0264.

    Article  CAS  PubMed  Google Scholar 

  53. Xuan, W., Q. Qu, B. Zheng, S. Xiong, and G.H. Fan. 2015. The chemotaxis of M1 and M2 macrophages is regulated by different chemokines. Journal of Leukocyte Biology 97 (1): 61–69. https://doi.org/10.1189/jlb.1A0314-170R.

    Article  CAS  PubMed  Google Scholar 

  54. Enayati, M., M. Eilenberg, C. Grasl, P. Riedl, C. Kaun, B. Messner, I. Walter, R. Liska, H. Schima, J. Wojta, B.K. Podesser, and H. Bergmeister. 2016. Biocompatibility assessment of a new biodegradable vascular graft via in vitro co-culture approaches and in vivo model. Annals of Biomedical Engineering 44 (11): 3319–3334. https://doi.org/10.1007/s10439-016-1601-y.

  55. Braga, T.T., M. Correa-Costa, H. Azevedo, R.S. Silva, M.C. Cruz, M.E. Almeida, M.I. Hiyane, C.A. Moreira-Filho, M.F. Santos, K.R. Perez, I.M. Cuccovia, and N.O. Camara. 2016. Early infiltration of p40IL12(+)CCR7(+)CD11b(+) cells is critical for fibrosis development. Immun Inflamm Dis 4 (3): 300–314. https://doi.org/10.1002/iid3.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gillett, A., M. Marta, T. Jin, J. Tuncel, P. Leclerc, R. Nohra, S. Lange, R. Holmdahl, T. Olsson, R.A. Harris, and M. Jagodic. 2010. TNF-α production in macrophages is genetically determined and regulates inflammatory disease in rat. The Journal of Immunology 185 (1): 442–450. https://doi.org/10.4049/jimmunol.0904101.

    Article  CAS  PubMed  Google Scholar 

  57. Blaževski, J., F. Petković, M. Momčilović, B. Jevtic, D. Miljković, and M. Mostarica Stojković. 2013. High interleukin-10 expression within the central nervous system may be important for initiation of recovery of Dark Agouti rats from experimental autoimmune encephalomyelitis. Immunobiology 218 (9): 1192–1199. https://doi.org/10.1016/j.imbio.2013.04.004.

    Article  CAS  PubMed  Google Scholar 

  58. Chen, W., W. Jin, N. Hardegen, K.J. Lei, L. Li, N. Marinos, G. McGrady, and S.M. Wahl. 2003. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. Journal of Experimental Medicine 198: 1875–1886. https://doi.org/10.1084/jem.20030152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gelderman, K.A., M. Hultqvist, A. Pizzolla, M. Zhao, K.S. Nandakumar, R. Mattsson, and R. Holmdahl. 2007. Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. The Journal of Clinical Investigation 117: 3020–3028. https://doi.org/10.1172/JCI31935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vasilev, S., A. Gruden-Movsesijan, N. Ilic, and L.J. Sofronic-Milosavljevic. 2009. Strain difference in susceptibility to Trichinella spiralis infection between Dark Agouti and Albino Oxford rats. Veterinary Parasitology 159: 229–231. https://doi.org/10.1016/j.vetpar.2008.10.042.

    Article  CAS  PubMed  Google Scholar 

  61. Liao, C.T., M. Rosas, L.C. Davies, P.J. Giles, V.J. Tyrrell, V.B. O’Donnell, N. Topley, I.R. Humphreys, D.J. Fraser, S.A. Jones, and R.R. Taylor. 2016. IL-10 differentially controls the infiltration of inflammatory macrophages and antigen-presenting cells during inflammation. European Journal of Immunology 46 (9): 2222–2232. https://doi.org/10.1002/eji.201646528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rivollier, A., L. Perrin-Cocon, S. Luche, H. Diemer, J.M. Strub, D. Hanau, A. van Dorsselaer, V. Lotteau, C. Rabourdin-Combe, T. Rabilloud, and C. Servet-Delprat. 2006. High expression of antioxidant proteins in dendritic cells: Possible implications in atherosclerosis. Molecular and Cellular Proteomics 5 (4): 726–736. https://doi.org/10.1074/mcp.M500262-MCP200.

    Article  CAS  PubMed  Google Scholar 

  63. Kumar, A., H. Wu, L.S. Collier-Hyams, J.M. Hansen, T. Li, K. Yamoah, Z.Q. Pan, D.P. Jones, and A.S. Neish. 2007. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO Journal 26 (21): 4457–4466. https://doi.org/10.1038/sj.emboj.7601867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fong, F.L.Y., P. Kirjavainen, V.H.Y. Wong, and H. El-Nezami. 2015. Immunomodulatory effects of Lactobacillus rhamnosus GG on dendritic cells, macrophages and monocytes from healthy donors. J Funct Foods 13: 71–79. https://doi.org/10.1038/srep22845.

    Article  CAS  Google Scholar 

  65. Copin, R., P. De Baetselier, Y. Carlier, J.J. Letesson, and E. Muraille. 2007. MyD88-dependent activation of B220-CD11b+Ly-6C+ dendritic cells during Brucella melitensis infection. The Journal of Immunology 178 (8): 5182–5191. https://doi.org/10.4049/jimmunol.178.8.5182.

    Article  CAS  PubMed  Google Scholar 

  66. Gordon, S., and P.R. Taylor. 2005. Monocytes and macrophage heterogeneity. Nature Reviews Immunology 5: 953–964.

    Article  CAS  PubMed  Google Scholar 

  67. Mills, C.D. 2001. Macrophage arginine metabolism to ornithine/urea or nitric oxide/citrulline: A life or death issue. Critical Reviews in Immunology 21 (5): 399–425.

    CAS  PubMed  Google Scholar 

  68. Das, P., A. Lahiri, A. Lahiri, and D. Chakravortty. 2010. Modulation of the arginase pathway in the context of microbial pathogenesis: A metabolic enzyme moonlighting as an immune modulator. PLoS Pathogens 6 (6): e1000899. https://doi.org/10.1371/journal.ppat.1000899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chang, H.C., K.H. Lin, Y.T. Tai, J.T. Chen, and R.M. Chen. 2010. Lipoteichoic acid-induced TNF-α and IL-6 gene expressions and oxidative stress production in macrophages are suppressed by ketamine through downregulating Toll-like receptor 2-mediated activation of ERK1/2 and NFκB. Shock 33: 485–492. https://doi.org/10.1097/SHK.0b013e3181c3cea5.

    Article  CAS  PubMed  Google Scholar 

  70. Zídek, Z., H. Farghali, and E. Kmoníčková. 2010. Intrinsic nitric oxide-stimulatory activity of lipoteichoic acids from different Gram-positive bacteria. Nitric Oxide 23 (4): 300–310. https://doi.org/10.1016/j.niox.2010.09.001.

    Article  CAS  PubMed  Google Scholar 

  71. Ryan, J.L., W.B. Yohe, and D.C. Morrison. 1980. Stimulation of peritoneal cell arginase by bacterial lipopolysaccharides. American Journal of Pathology 99: 451–462.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. da Silva, T.A., A.L.V. Zorzetto-Fernandes, N.T. Cecílio, A. Sardinha-Silva, F.F. Fernandes, and M.C. Roque-Barreira. 2017. CD14 is critical for TLR2-mediated M1 macrophage activation triggered by N-glycan recognition. Science and Reports 7 (1): 7083. https://doi.org/10.1038/s41598-017-07397-0.

    Article  CAS  Google Scholar 

  73. Strus, M., K. Okoń, B. Nowak, M. Pilarczyk-Zurek, P. Heczko, A. Gawda, M. Ciszek-Lenda, B. Skowron, A. Baranowska, and J. Marcinkiewicz. 2015. Distinct effects of Lactobacillus plantarum KL30B and Escherichia coli 3A1 on the induction and development of acute and chronic inflammation. Cent Eur J Immunol 40 (4): 420–430. https://doi.org/10.5114/ceji.2015.56963.

    Article  CAS  PubMed  Google Scholar 

  74. Matsuura, M. 2013. Structural Modifications of Bacterial lipopolysaccharide that facilitate gram-negative bacteria evasion of host innate immunity. Frontiers in Immunology 4: 109. https://doi.org/10.3389/fimmu.2013.00109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ho, N.K., S.P. Hawley, J.C. Ossa, O. Mathieu, T.A. Tompkins, K.C. Johnson-Henry, and P.M. Sherman. 2013. Immune signalling responses in intestinal epithelial cells exposed to pathogenic Escherichia coli and lactic acid-producing probiotics. Benef Microbes 4 (2): 195–209. https://doi.org/10.3920/BM2012.0038.

    Article  CAS  PubMed  Google Scholar 

  76. Llewellyn, A., and A. Foey. 2017. Probiotic modulation of innate cell pathogen sensing and signaling events. Nutrients 9 (10): 1156. https://doi.org/10.3390/nu9101156.

    Article  CAS  PubMed Central  Google Scholar 

  77. Chondrou, P., A. Karapetsas, D.E. Kiousi, S. Vasileiadis, P. Ypsilantis, S. Botaitis, A. Alexopoulos, S. Plessas, E. Bezirtzoglou, and A. Galanis. 2020. Assessment of the immunomodulatory properties of the probiotic strain Lactobacillus paracasei K5 in vitro and in vivo. Microorganisms 8 (5): 709. https://doi.org/10.3390/microorganisms8050709.

  78. Sivan, A., L. Corrales, N. Hubert, J.B. Williams, K. Aquino-Michaels, M.E. Zachary, F.W. Benyamin, Y.M. Lei, B. Jabri, M.-L. Alegre, E.B. Chang, and T.F. Gajewski. 2015. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350 (6264): 1084–1089. https://doi.org/10.1126/science.aac4255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Emam, M., S. Tabatabaei, M. Sargolzaei, S. Sharif, F. Schenkel, and B. Mallard. 2019. The effect of host genetics on in vitro performance of bovine monocyte-derived macrophages. Journal of Dairy Science 102 (10): 9107–9116. https://doi.org/10.3168/jds.2018-15960.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Ministry of Education, Science and Technological Development Republic of Serbia (contract number 451–03-68/2020–14/200177).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Veljko Blagojević, Ivana Ćuruvija, and Vesna Vujić, and study was supervised by Stanislava Stanojević. The first draft of the manuscript was written by Stanislava Stanojević and Veljko Blagojević, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Stanislava Stanojević.

Ethics declarations

Ethics Approval

The experimental protocol and the procedures involving animals and their care were approved by Ministry of Agriculture and Environmental Protection (licence number 323–07-01577/2016–05/14, issued on 02–25-2016), and were in accordance with the principles declared in Directive 2010/63/EU of the European Parliament and of the Council from 22 September 2010 on the protection of animals used for scientific purposes (revising Di.rective 86/609/EEC).

Disclaimer

Ministry of Education, Science and Technological Development had no role in study design, collection, analysis and interpretation of data, writing of the report, and in the decision to submit the article for publication.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanojević, S., Blagojević, V., Ćuruvija, I. et al. Lactobacillus rhamnosus Affects Rat Peritoneal Cavity Cell Response to Stimulation with Gut Microbiota: Focus on the Host Innate Immunity. Inflammation 44, 2429–2447 (2021). https://doi.org/10.1007/s10753-021-01513-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01513-z

KEY WORDS:

Navigation