Skip to main content
Log in

Sparse Interpolation in Terms of Multivariate Chebyshev Polynomials

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Sparse interpolation refers to the exact recovery of a function as a short linear combination of basis functions from a limited number of evaluations. For multivariate functions, the case of the monomial basis is well studied, as is now the basis of exponential functions. Beyond the multivariate Chebyshev polynomial obtained as tensor products of univariate Chebyshev polynomials, the theory of root systems allows to define a variety of generalized multivariate Chebyshev polynomials that have connections to topics such as Fourier analysis and representations of Lie algebras. We present a deterministic algorithm to recover a function that is the linear combination of at most r such polynomials from the knowledge of r and an explicitly bounded number of evaluations of this function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. in the proof we show that the distance to the nearest integer is less than \(\frac{1}{2}\) so this is well defined.

  2. To simplify notation, we will not introduce new symbols to distinguish between an element of \(\mathbb {K}[x^{\pm }]\) and its image in \(\mathbb {K}[x^{\pm }]/J\).

References

  1. M. Abril Bucero and B. Mourrain. Border basis relaxation for polynomial optimization. Journal of Symbolic Computation, 74:378 – 399, 2016.

  2. A. Arnold. Sparse Polynomial Interpolation and Testing. PhD thesis, University of Waterloo, 3 2016.

  3. A. Arnold, M. Giesbrecht, and D. Roche. Sparse interpolation over finite fields via low-order roots of unity. In ISSAC 2014—Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pages 27–34. ACM, New York, 2014.

  4. A. Arnold and E. Kaltofen. Error-correcting sparse interpolation in the Chebyshev basis. In Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC ’15, pages 21–28, New York, NY, USA, 2015. ACM.

  5. A. Arnold and D. Roche. Multivariate sparse interpolation using randomized Kronecker substitutions. In ISSAC 2014—Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pages 35–42. ACM, New York, 2014.

  6. T. Becker and V. Weispfenning. Gröbner Bases - A Computational Approach to Commutative Algebra. Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  7. M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial interpolation. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pages 301–309, New York, NY, USA, 1988. ACM.

  8. A. Bernardi and D. Taufer. Waring, tangential and cactus decompositions. J. Math. Pures Appl. (9), 143:1–30, 2020.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Berthomieu, B. Boyer, and J.-C. Faugère. Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences. Journal of Symbolic Computation, 83:36 – 67, 2017. Special issue on the conference ISSAC 2015: Symbolic computation and computer algebra.

  10. N. Bourbaki. Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines. Actualités Scientifiques et Industrielles, No. 1337. Hermann, Paris, 1968.

  11. N. Bourbaki. Éléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII: Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII: Algèbres de Lie semi-simples déployées. Actualités Scientifiques et Industrielles, No. 1364. Hermann, Paris, 1975.

  12. M. Collowald and E. Hubert. A moment matrix approach to computing symmetric cubatures. https://hal.inria.fr/hal-01188290, August 2015.

  13. M. Collowald and E. Hubert. Algorithms for computing cubatures based on moment theory. Studies in Applied Mathematics, 141(4):501–546, 2018.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms. Undergraduate Texts in Mathematics. Springer, Cham, fourth edition, 2015. An introduction to computational algebraic geometry and commutative algebra.

  15. D. A. Cox, J. Little, and D. O’Shea. Using algebraic geometry, volume 185 of Graduate Texts in Mathematics. Springer, New York, second edition, 2005.

  16. A. Cuyt, Y. Hou, F. Knaepkens, and W.-S. Lee. Sparse multidimensional exponential analysis with an application to radar imaging. SIAM J. Sci. Comput., 42(3):B675–B695, 2020.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Dieudonné. Special functions and linear representations of Lie groups, volume 42 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence, R.I., 1980. Expository lectures from the CBMS Regional Conference held at East Carolina University, Greenville, North Carolina, March 5–9, 1979.

  18. A. Dress and J. Grabmeier. The interpolation problem for \(k\)-sparse polynomials and character sums. Adv. in Appl. Math., 12(1):57–75, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Fulton and J. Harris. Representation theory, volume 129 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1991. A first course, Readings in Mathematics.

  20. K. Gatermann and P. A. Parrilo. Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl. Algebra, 192(1-3):95–128, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Giesbrecht, G. Labahn, and W. Lee. Symbolic-numeric sparse polynomial interpolation in chebyshev basis and trigonometric interpolation. In CASC 2004, 2004.

  22. M. Giesbrecht, G. Labahn, and W.-S. Lee. Symbolic-numeric sparse interpolation of multivariate polynomials. J. Symbolic Comput., 44(8):943–959, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  23. W. H. Greub. Linear algebra. Third edition. Die Grundlehren der Mathematischen Wissenschaften, Band 97. Springer-Verlag New York, Inc., New York, 1967.

  24. D. Grigoriev, M. Karpinski, and M. Singer. The interpolation problem for \(k\)-sparse sums of eigenfunctions of operators. Adv. in Appl. Math., 12(1):76–81, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Hall. Lie groups, Lie algebras, and representations, volume 222 of Graduate Texts in Mathematics. Springer, Cham, second edition, 2015. An elementary introduction.

  26. M. Hoffman and W. Withers. Generalized Chebyshev polynomials associated with affine Weyl groups. Trans. Amer. Math. Soc., 308(1):91–104, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  27. Q. Huang. An improved early termination sparse interpolation algorithm for multivariate polynomials. J. Syst. Sci. Complex., 31(2):539–551, 2018.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Humphreys. Introduction to Lie algebras and representation theory. Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9.

  29. E. Kaltofen and Y. Lakshman. Improved sparse multivariate polynomial interpolation algorithms. In Symbolic and algebraic computation (Rome, 1988), volume 358 of Lecture Notes in Comput. Sci., pages 467–474. Springer, Berlin, 1989.

  30. E. Kaltofen and W.-S. Lee. Early termination in sparse interpolation algorithms. J. Symbolic Comput., 36(3-4):365–400, 2003. International Symposium on Symbolic and Algebraic Computation (ISSAC’2002) (Lille).

  31. E. Kaltofen, W.-S. Lee, and A. Lobo. Early termination in Ben-Or/Tiwari sparse interpolation and a hybrid of Zippel’s algorithm. In Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation (St. Andrews), pages 192–201, New York, 2000. ACM.

  32. S. Kunis, T. Peter, T. Römer, and U. von der Ohe. A multivariate generalization of Prony’s method. Linear Algebra Appl., 490:31–47, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  33. Y. Lakshman and D. Saunders. Sparse polynomial interpolation in nonstandard bases. SIAM J. Comput., 24(2):387–397, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Laurent. Sums of squares, moment matrices and optimization over polynomials. In Emerging applications of algebraic geometry, volume 149 of IMA Vol. Math. Appl., pages 157–270. Springer, New York, 2009.

  35. H. Li and Y. Xu. Discrete Fourier analysis on fundamental domain and simplex of \(A_d\) lattice in \(d\)-variables. J. Fourier Anal. Appl., 16(3):383–433, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Lorenz. Multiplicative invariant theory, volume 135 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2005. Invariant Theory and Algebraic Transformation Groups, VI.

  37. C. Lubich. From quantum to classical molecular dynamics: reduced models and numerical analysis. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008.

  38. V. D. Lyakhovsky and Ph. V. Uvarov. Multivariate Chebyshev polynomials. J. Phys. A, 46(12):125201, 22, 2013.

  39. R. Moody, L. Motlochová, and J. Patera. Gaussian cubature arising from hybrid characters of simple Lie groups. J. Fourier Anal. Appl., 20(6):1257–1290, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Moody and J. Patera. Computation of character decompositions of class functions on compact semisimple Lie groups. Math. Comp., 48(178):799–827, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  41. R. Moody and J. Patera. Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups. Adv. in Appl. Math., 47(3):509–535, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  42. B. Mourrain. Polynomial–exponential decomposition from moments. Foundations of Computational Mathematics, 18(6):1435–1492, Dec 2018.

    Article  MathSciNet  MATH  Google Scholar 

  43. H. Munthe-Kaas. On group Fourier analysis and symmetry preserving discretizations of PDEs. J. Phys. A, 39(19):5563–5584, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  44. H. Munthe-Kaas, M. Nome, and B. Ryland. Through the kaleidoscope: symmetries, groups and Chebyshev-approximations from a computational point of view. In Foundations of computational mathematics, Budapest 2011, volume 403 of London Math. Soc. Lecture Note Ser., pages 188–229. Cambridge Univ. Press, Cambridge, 2013.

  45. M. Nesterenko, J. Patera, and A. Tereszkiewicz. Orthogonal polynomials of compact simple Lie groups. Int. J. Math. Math. Sci., 2011.

  46. V. Pereyra and G. Scherer, editors. Exponential Data Fitting and its Applications. Bentham e-books, http://www.benthamscience.com/ebooks/9781608050482, 2010.

  47. D. Potts and M. Tasche. Sparse polynomial interpolation in Chebyshev bases. Linear Algebra Appl., 441:61–87, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  48. S. Power. Finite rank multivariable Hankel forms. Linear Algebra Appl., 48:237–244, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  49. C. (Baron de Prony) Riche. Essai expérimental et analytique sur les lois de la dilatabilité des fluides élastique et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, à différentes températures. J. de l’École Polytechnique, 1:24–76, 1795.

  50. C. Riener, T. Theobald, L. J. Andrén, and J. B. Lasserre. Exploiting symmetries in SDP-relaxations for polynomial optimization. Math. Oper. Res., 38(1):122–141, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  51. B. Ryland and H. Munthe-Kaas. On multivariate Chebyshev polynomials and spectral approximations on triangles. In Spectral and high order methods for partial differential equations, volume 76 of Lect. Notes Comput. Sci. Eng., pages 19–41. Springer, Heidelberg, 2011.

  52. S. Sahnoun, K. Usevich, and P. Comon. Multidimensional ESPRIT for Damped and Undamped Signals: Algorithm, Computations, and Perturbation Analysis. IEEE Transactions on Signal Processing, 65(22):5897–5910, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  53. S. Sakata. The BMS algorithm. In M. Sala, S. Sakata, T. Mora, C. Traverso, and L. Perret, editors, Gröbner Bases, Coding, and Cryptography, pages 143–163. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

    Chapter  Google Scholar 

  54. T. Sauer. Prony’s method in several variables: symbolic solutions by universal interpolation. J. Symbolic Comput., 84:95–112, 2018.

    Article  MathSciNet  MATH  Google Scholar 

  55. J.-P. Serre. Algèbres de Lie semi-simples complexes. W. A. Benjamin, inc., New York-Amsterdam, 1966.

    MATH  Google Scholar 

  56. N. Vilenkin. Special functions and the theory of group representations. Translated from the Russian by V. N. Singh. Translations of Mathematical Monographs, Vol. 22. American Mathematical Society, Providence, R. I., 1968.

Download references

Acknowledgements

The authors wish to thank the Fields institute and the organizers of the thematic program on computer algebra where this research was initiated. They also wish to thank Andrew Arnold for discussions on sparse interpolation and the timely pointer on the use of the hypercross in the multivariate case. Thanks also go to the referees of this paper for very useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Singer.

Additional information

Communicated by Hans Munthe-Kaas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author was partially supported by a grant from the Simons Foundation (#349357, Michael Singer).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubert, E., Singer, M.F. Sparse Interpolation in Terms of Multivariate Chebyshev Polynomials. Found Comput Math 22, 1801–1862 (2022). https://doi.org/10.1007/s10208-021-09535-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-021-09535-7

Keywords

Mathematics Subject Classification

Navigation