Skip to main content
Log in

NUMERICAL STUDY OF DIFFUSION COMBUSTION OF PULVERIZED COAL IN A GAS JET

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Adaptation of a mathematical model of gas diffusion combustion for different flow rates of CO–H2 and a constant coal flow rate is carried out. It is shown that the results of calculating the main characteristics of the flame are in satisfactory agreement with experimental data and can be used to determine the structure of pulverized coal–gas flow, gas composition, particle and gas temperature, carbon combustion efficiency, etc. The proposed model is suitable for analyzing the stability of coal–gas flame and the transient processes accompanying changes in the mode of supply of the fuel-oxidizer medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. “Coal 2019: Analysis and Forecast to 2024. S. l.," Intern. Energy Agency, 2019. http://www.iea.org.

  2. N. A. Abaimov, E. B. Butakov, A. P. Burdukov, et al., “Investigation of Air-Blown Two-Stage Entrained-Flow Gasification of Micronized Coal," Fuel 271, 117487 (2020).

    Article  Google Scholar 

  3. E. Croiset, “NO\(_{x}\) and SO2 Emissions from O2/CO2 Recycle Coal Combustion," Fuel 80 (14), 2117–2121 (2001).

    Article  Google Scholar 

  4. C. R. Choi and C. N. Kim, “Numerical Investigation on the Flow, Combustion and NO\(_{x}\) Emission Characteristics in a 500 MWe Tangentially Fired Pulverized-Coal Boiler," Fuel 88 (9), 1720–1731 (2009).

    Article  Google Scholar 

  5. D. K. Sharaborin, R. V. Tolstoguzov, V. M. Dulin, and D. M. Markovich, “On the Structure of an Impact Jet with Flow Swirling and Combustion," Fiz. Goreniya Vzryva 56 (2), 10–16 (2020) [Combust., Expl., Shock Waves 56 (2), 131–136 (2020). DOI: 10.1134/S0010508220020021].

    Article  Google Scholar 

  6. A. S. Lobasov, V. M. Dulin, A. A. Dekterev, and A. V. Minakov, “Turbulent Transport in a Swirling Jet with Vortex Core Breakdown. PIV/PLIF-Measurements and Numerical simulation," Teplofiz. Aaeromek. 26 (3), 381–389 (2019) [Thermophys. Aeromech. 26 (3), 351–359 (2019). DOI: 10.1134/S0869864319030041].

    Article  ADS  Google Scholar 

  7. I. V. Litvinov, D. K. Sharaborin, and S. I. Shtork, “Reconstruction of the Structural Parameters of a Precessing Vortex by SPIV and Acoustic Sensor," Experiments Fluids 60, iss. 9, No. 139, 1–18 (2019).

    Article  Google Scholar 

  8. S. M. Hwang, R. Kurose, F. Akamatsu, et al., “Application of Optical Diagnostics Techniques to a Laboratory-Scale Turbulent Pulverized Coal Flame," Energy Fuels 19 (2), 382–392 (2005).

    Article  Google Scholar 

  9. S. R. Gollahalli, A. Prasad, and S. Gundavelli, “Lift-Off Characteristics and Flame Base Structure of Coal Seeded Gas Jet Flames," Proc. Inst. Mech. Engrs. A 210 (5), 373–382 (1996).

    Google Scholar 

  10. N. Mika Hashimoto, R. Kurose, H. Shirai, “Numerical Simulation of Pulverized Coal Jet Flame Employing the TDP Model," Fuel97, 277–287 (2012).

    Article  Google Scholar 

  11. M. Muto, H. Watanabe, R. Kurose, et al., “Large-Eddy Simulation of Pulverized Coal Jet Flame. Effect of Oxygen Concentration on NO\(_{x}\) Formation," Fuel 142, 152–163 (2015).

    Article  Google Scholar 

  12. J. Watanabe, T. Okazaki, K. Yamamoto, et al., “Large-Eddy Simulation of Pulverized Coal Combustion Using Flamelet Model," Proc. Combust. Inst. 36, 2155–2163 (2017).

    Article  Google Scholar 

  13. M. N. Maidanik, E. K. Verbovetskii, A. A. Dekterev, et al., “Mathematical Simulation of the Furnace and Turning Gas Conduit of a P-50R Boiler during Joint Combustion of Solid and Gaseous Fuel," Thermal Engng. 58 (6), 483–488 (2011).

    Article  ADS  Google Scholar 

  14. M. Yu. Chernetskiy, A. A. Dekterev, A. P. Burdukov, and K. Hanjalić, “Computational Modeling of Autothermal Combustion of Mechanically-Activated Micronized Coal," Fuel 135, 443–458 (2014).

    Article  Google Scholar 

  15. A. A. F. Peters and R. Weber, “Mathematical Modeling of a 2.4 MW Swirling Pulverized Coal Flame," Combust. Sci. Technol. 122, 131–182 (1997).

    Article  Google Scholar 

  16. D. V. Krasinsky, V. V. Salomatov, I. S. Anufriev, et al., “Modeling of Pulverized Coal Combustion Processes in a Vortex Furnace of Improved Design. Pt 2. Combustion of Brown Coal from the Kansk-Achinsk Basin in a Vortex Furnace," Thermal Engng. 62 (3), 208–214 (2015).

    Article  ADS  Google Scholar 

  17. M. Yu. Chernetskiy, V. A. Kuznetsov, A. A. Dekterev, et al., “Comparative Analysis of Turbulence Model Effect on Description of the Processes of Pulverized Coal Combustion at Flow Swirl," Teplofiz. Aeromech 23 (4), 615–626 (2016) [Thermophys. Aeromech. 23 (4), 591–602 (2016).

    Article  ADS  Google Scholar 

  18. Ruipeng Cai, Kun Luo, Hiroaki Watanabe, et al., “Recent Progress in High-Fidelity Simulations of Pulverized Coal Combustion," Adv. Powder Technol. 31 (7), 3062–3079 (2020).

    Article  Google Scholar 

  19. A. S. Lobasov, Ar. A. Dekterev, and A. V. Minakov, “Numerical Simulation of Premixed Methane/Air and Synthesis Gas/Air Flames for Turbulence Swirling Jet," J. Phys. Conf. Ser. 1382, 1–5 (2019).

    Google Scholar 

  20. A. V. Dekterev, Ar. A. Dekterev, and A. V. Minakov, “Comparative Study of Different Combustion Models for Turbulent Gas Flames," J. Phys. Conf. Ser. 754, 1–6 (2016).

    Article  Google Scholar 

  21. V. M. Dulin, D. M. Markovich, A. V. Minakov, et al., “Experimental and Numerical Simulation for Swirl Flow in a Combustor," Thermal Engng. 60 (13), 990–997 (2013).

    Article  ADS  Google Scholar 

  22. W. P. Jones and R. P. Lindstedt, “Global Reaction Schemes for Hydrocarbon Combustion," Combust. Flame 73, 222–233 (1988).

    Article  Google Scholar 

  23. B. W. Brown, L. D. Smoot, P. J. Smith, and P. O. Hedman, “Measurement and Prediction of Entrained-Flow Gasification Processes," AIChE J. 34, 435–446 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Butakov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 3, pp. 158-164. https://doi.org/10.15372/PMTF20210315.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butakov, E.B., Kuznetsov, V.A., Minakov, A.V. et al. NUMERICAL STUDY OF DIFFUSION COMBUSTION OF PULVERIZED COAL IN A GAS JET. J Appl Mech Tech Phy 62, 484–489 (2021). https://doi.org/10.1134/S0021894421030159

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421030159

Keywords

Navigation