Skip to main content
Log in

METHOD OF DIFFERENTIAL CONSTRAINTS: LOCAL EQUILIBRIUM APPROXIMATION IN A PLANAR MOMENTUMLESS TURBULENT WAKE

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

It is revealed that the local equilibrium approximation (algebraic parametrization of triple correlations of turbulent fluctuations of a vertical velocity component) in the problem of a planar momentumless turbulent wake is a differential constraint for a third-order closure model. The results of numerical experiments that confirm the feasibility of the used known algebraic parametrization of this third-order correlation moment are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics. Vol. I. Mechanics of Turbulence (Dover Publications, 2007).

  2. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics. Vol. II. Mechanics of Turbulence (Dover Publications, 2007).

  3. N. N. Yanenko, “Compatibility Theory and Methods of Integration of Systems of Nonlinear Partial Differential Equations," inProceedings of the 4th All-Union Mathematical Congress, Leningrad, July 3–12, 1961 (Nauka. Leningradskoe Otdelenie, Leningrad, 1964) Vol. 2, pp. 247–252 [in Russian].

    Google Scholar 

  4. A. F. Sidorov, V. P. Shapeev, and N. N. Yanenko, The Method of Differential Constraints and Its Applications in Gas Dynamics (Nauka. Sib. Otd., Novosibirsk, 1988) [in Russian].

    Google Scholar 

  5. V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachev, and A. A. Rodionov,Applications of Group-Theoretical Methods in Hydrodynamics (Springer Netherlands, 1998).

    Book  Google Scholar 

  6. V. N. Grebenev and B. B. Ilyushin, “Application of Differential Constraints to the Analysis of Turbulence Models," Doklady Akademii Nauk 384 (6), 761–764 (2000) [Doklady Physics45 (10), 550–553 (2000)].

  7. V. N. Grebenev and B. B. Ilyushin, “Method of Differential Constraints in the Problem of a Stratified Shear-Free Turbulent Mixing Layer," Doklady Akademii Nauk 382 (6), 768–771 (2002) [Doklady Physics 47 (2), 159–162 (2002)].

  8. V. N. Grebenev, A. G. Demenkov, and G. G. Chernykh, “Analysis of the Local-Equilibrium Approximation in the Problem of Far Planar Turbulent Wake," Doklad Akademii Nauk 385 (1), 57–60 (2002) [Doklady Physics 47 (7), 518–521 (2002)].

  9. K. Hanjalic and B. E. Launder, “A Reynolds Stress Model of Turbulence and Its Application to Thin Shear Flows," J. Fluid Mech. 52, 609–638 (1972).

    Article  ADS  Google Scholar 

  10. O. Zeman and J. L. Lumley, “Modeling Buoyancy Driven Mixed Layer," J. Athmospher. Sci. 33, 1974–1988 (1976).

    Article  ADS  Google Scholar 

  11. A. Chorin, “Theories of Turbulence," Lecture Notes Math.615, 36–47 (1977).

    Article  MathSciNet  Google Scholar 

  12. A. F. Kurbatskii, Simulating the Nonlocal Turbulent Transfer of Momentum and Heat (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  13. B. B. Ilyushin, “Model of Fourth-Order Cumulants for Description of Turbulent Transport by Large-Scale Vortex Structures," Prikl. Mekh. Tekh. Fiz. 40 (5), 106–112 (1999) [J. Appl. Mech. Tech. Phys. 40 (5), 871–876 (2015)].

    Article  Google Scholar 

  14. Yu. M. Dmitrenko, I. I. Kovalev, N. N. Luchko, and P. Ya. Cherepanov, “Plane Turbulent Wake with Zero Excess Momentum," Inzh.-Fiz. Zhurn. 52 (5), 743–750 (1987) [J. Engng Phys. 52 (5), 536–542 (1987)].

    Article  ADS  Google Scholar 

  15. J. M. Cimbala and W. J. Park, “An Experimental Investigation of the Turbulent Structure in a Two-Dimensional Momentumless Wake," J. Fluid Mech. 213, 479–509 (1990).

    Article  ADS  Google Scholar 

  16. N. N. Fedorova and G. G. Chernykh, “Numerical Simulation of Planar Turbulent Wakes," Matematicheskoe Modelirovanie 6(10), 24–34 (1994) [Matem. Mod. 6 (10), 24–34 (1994)].

    MATH  Google Scholar 

  17. V. Maderich and S. Konstantinov, “Asymptotic and Numerical Analysis of Momentumless Turbulent Wakes," Fluid Dynamics Res.42, 045503 (2010). DOI: 10.1088/0169-5983/42/4/045503.

    Article  ADS  MATH  Google Scholar 

  18. O. F. Voropaeva, B. B. Ilyushin, and G. G. Chernykh, “Numerical Simulation of the far Momentumless Turbulent Wake in a Linearly Stratified Medium," Doklady Akademii Nauk 386 (6), 756–760 (2002) [Doklady Physics 47 (10), 762–766 (2002)].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Grebenev.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 3, pp. 38-47.https://doi.org/10.15372/PMTF20210304.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grebenev, V.N., Demenkov, A.G. & Chernykh, G.G. METHOD OF DIFFERENTIAL CONSTRAINTS: LOCAL EQUILIBRIUM APPROXIMATION IN A PLANAR MOMENTUMLESS TURBULENT WAKE. J Appl Mech Tech Phy 62, 383–390 (2021). https://doi.org/10.1134/S0021894421030044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421030044

Keywords

Navigation