Skip to main content
Log in

CALCULATION OF LINEAR AND NONLINEAR STABILITY OF TWO-LAYER LIQUID FLOW IN A HORIZONTAL PLANE CHANNEL

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The linear and nonlinear stability of two-layer Poiseuille flow in a horizontal channel is considered, and the stability of this flow is compared with the stability of the same flow in a vertical channel. In the first step, the Navier–Stokes equations in both phases are linearized, and the dynamics of periodic perturbations is determined by solving the spectral problem in a wide range of the Reynolds number of the liquid and the gas velocity. The neutral and fastest growing perturbations of the unstable mode are calculated. In the second step, nonlinear wave modes of Poiseuille flow in the horizontal channel are calculated using the full Navier–Stokes equations for both fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. C. S. Yih, “Instability due to Viscosity Stratification," J. Fluid Mech. 27, 337–352 (1967).

    Article  ADS  Google Scholar 

  2. S. G. Yiantsios and B. G. Higgins, “Numerical Solution of Eigenvalue Problems Using the Compound Matrix Method," J. Comput. Phys. 74, 25–40 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  3. S. G. Yiantsios and B. G. Higgins, “Linear Stability of Plane Poiseuille Flow of Two Superposed Fluids," Phys. Fluids31, 3225–3238 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  4. B. S. Tilley, S. H. Davis, and S. G. Bankoff, “Nonlinear Long-Wave Stability of Superposed Fluids in an Inclined Channel," J. Fluid Mech. 277, 55–83 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  5. B. S. Tilley, S. H. Davis, and S. G. Bankoff, “Linear Stability Theory of Two-Layer Fluid Flow in an Inclined Channel," Phys. Fluids 6, 3906–3922 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  6. W. Nusselt, “Die Oberflächenkondensation des Wasserdampfes," Z. Vereins Dtsch. Ingenieure. 60, 541–546 (1916).

    Google Scholar 

  7. P. L. Kapitsa, “Wave Flow of Thin Layers of a Viscous Fluid. Pt. 1. Free Flow," Zh. Eksp. Teor. Fiz. 18 (1), 3–28 (1948).

    ADS  Google Scholar 

  8. P. L. Kapitsa and S. P. Kapitsa, “Wave Flow of Thin Layers of a Viscous Fluid. H 3. Experimental Study of the Wave Flow Mode," J. Experiment. Theor. Phys. 19 (2), 105–120 (1949).

    Google Scholar 

  9. T. B. Benjamin, “Wave Formation in Laminar Flow Down on Inclined Plane," J. Fluid Mech. 2, 554–574 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  10. C.-H. Yih, “Stability of Liquid Flow Down an Inclined Plane," Phys. Fluids 6, 321–334 (1963).

    Article  ADS  Google Scholar 

  11. Yu. Ya. Trifonov, “Calculation of Linear Stability of a Stratified Gas–Liquid Flow in an Inclined Plane Channel," Prikl. Mekh. Tekh. Fiz. 59 (1), 61–70 (2018) [J. Appl. Mech. Tech. Phys. 59 (1), 52–60 (2018); DOI: 10.1134/S0021894418010078].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Y. Y. Trifonov, “Linear and Nonlinear Instabilities of a Co-Current Gas-Liquid Flow between Two Inclined Plates Analyzed using the Navier–Stokes Equations," Intern. J. Multiphase Flow. 122, 103159 (2020).

    Article  MathSciNet  Google Scholar 

  13. Y. S. Kachanov, “Physical Mechanisms of Laminar-Boundary-Layer Transition," Annual Rev. Fluid Mech. 26, 411–482 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  14. J. Liu, J. D. Paul, and J. P. Gollub, “Measurements of Primary Instabilities of Film Flows," J. Fluid Mech. 250, 69–101 (1993).

    Article  ADS  Google Scholar 

  15. A. Charogiannis, J. S. An, and C. N. Markides, “A Simultaneous Planar Laser-Induced Fluorescence, Particle Image Velocimetry and Particle Tracking Velocimetry Technique for the Investigation of Thin Liquid-Film Flows," Experiment. Therm. Fluid Sci. 68, 516–536 (2015).

    Article  Google Scholar 

  16. S. V. Isaenkov, A. V. Cherdantsev, I. S. Vozhakov, et al., “Study of Primary Instability of Thick Liquid Films under Strong Gas Shear," Intern. J. Multiphase Flow 111, 62–81 (2019).

    Article  MathSciNet  Google Scholar 

  17. M. Schörner, D. Reck, N. Aksel, and Y. Trifonov, “Switching between Different Types of Stability Isles in Films over Topographies," Acta Mech. 229, 423–436 (2018). DOI: 10.1007/s00707-017-1979.

    Article  MathSciNet  Google Scholar 

  18. T. W. Kao and C. Park, “Experimental Investigations of the Stability of Channel Flows. Pt 2. Two-Layered Co-Current Flow in a Rectangular Channel," J. Fluid Mech. 52, 401–423 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Ya. Trifonov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 3, pp. 91-104. https://doi.org/10.15372/PMTF20210309.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trifonov, Y.Y. CALCULATION OF LINEAR AND NONLINEAR STABILITY OF TWO-LAYER LIQUID FLOW IN A HORIZONTAL PLANE CHANNEL. J Appl Mech Tech Phy 62, 429–440 (2021). https://doi.org/10.1134/S0021894421030093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421030093

Keywords

Navigation