Skip to main content
Log in

NUMERICAL SIMULATION OF FRACTURE OF NANOCRYSTALS OF THE TiAl3 INTERMETALLIC COMPOUND BY THE MOLECULAR DYNAMICS METHOD

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Results of numerical simulations of fracture of nanocrystals of the TiAl3 intermetallic compound by the molecular dynamics method are reported. The TiAl3 nanocrystals are subjected to uniaxial tension in a wide range of temperatures (300–1200 K). It is demonstrated that tension of nanocrystals of the TiAl3intermetallic compound heated approximately up to 1000 K first leads to a phase transition from the crystalline to liquid state, followed by fracture. Fracture of a heated TiAl3 nanowire is preceded by deformation in the superplasticity regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. B. J. Henza, T. Hawa, and M. Zachariah, “Molecular Dynamics Simulation of the Kinetic Sintering of Ni and Al Nanoparticle," Molecular Simulat. 35 (10/11), 804–811 (2009).

    Article  Google Scholar 

  2. L. Chang, C.-Y. Zhou, L.-L. Wen, et al., “Molecular Dynamics Study of Strain Rate Effects on Tensile Behavior of Single Crystal Titanium Nanowire," Comput. Materials Sci. 128, 348–358 (2017).

    Article  Google Scholar 

  3. L. Chang, C.-Y. Zhou, H.-X. Liu, et al., “Orientation and Strain Rate Dependent Tensile Behavior of Single Crystal Titanium Nanowires by Molecular Dynamics Simulations," J. Materials Sci. Technol. 34, 864–877 (2018).

    Article  Google Scholar 

  4. V. V. Pogorelko and A. E. Mayer, “Influence of Titanium and Magnesium Nanoinclusion on the Strength of Aluminum at High-Rate Tension: Molecular Dynamics Simulations," Materials Sci. Engng. A. 662, 227–240 (2016).

    Article  Google Scholar 

  5. A. E. Mayer and P. N. Mayer, “Evolution of Pore Ensemble in Solid and Molten Aluminum under Dynamic Tensile Fracture: Molecular Dynamics Simulations and Mechanical Models," Intern. J. Mech. Sci. 157/158, 816–832 (2019).

    Article  Google Scholar 

  6. C. Hui, R. Zhiyuan, C. Wence, et al., “Deformation Mechanisms in Nanotwinned \(\gamma\)-TiAl by Molecular Dynamics Simulation," Molecular Simulat. 44 (18), 1489–1500 (2018).

    Article  Google Scholar 

  7. P. A. Zhilyaev, A. Yu. Kuksin, V. V. Stegailov, and A. V. Yanilkin, “Effect of Plastic Deformation on Aluminum Single Crystal Fracture under Shock Wave Loading," Fiz. Tverd. Tela 52 (8), 1508–1512 (2010).

    Google Scholar 

  8. S. P. Kiselev and E. V. Zhirov, “Molecular-Dynamics Simulation of the Synthesis of Intermetallic Ti–Al," Intermetallics49, 106–114 (2014).

    Article  Google Scholar 

  9. S. P. Kiselev, “Method of Molecular Dynamics in Mechanics of Deformable Solids," Prikl. Mekh. Tekh. Fiz. 55 (3), 113–139 (2014) [J. Appl. Mech. Tech. Phys. 55 (3), 470–493 (2014)].

    Article  ADS  MathSciNet  Google Scholar 

  10. S. K. Godunov, S. P. Kiselev, I. M. Kulikov, and V. I. Mali, Modeling of Shock Wave Processes in Elastoplastic Materials at Different (Atomic, Meso-, and Thermodynamic) Structural Levels (Inst. Computer Research, Moscow, Izhevsk, 2014) [in Russian].

    Google Scholar 

  11. D. R. Kurran, “Dynamic Fracture," in Impact Dynamics (Mir, Moscow, 1985), pp. 257–293.

  12. S. I. Ashitkov, M. B. Agranat, G. I. Kanel, et al., “Behavior of Aluminum near its Ultimate Theoretical Strength in Experiments with a Femtosecond Laser Action," Pisma v ZHETF 29 (8), 568–573 (2010).

    Google Scholar 

  13. S. I. Ashitkov, P. S. Komarov, E. V. Struleva, and M. B. Agranat, “Resistance of Titanium near its Theoretical Strength Limit to Deformation," Teplofiz. Vys. Temp. 56, 897–901 (2018).

    Google Scholar 

  14. S. P. Kiselev, “Numerical Simulation of Fracture of the Ti–Al Intermetallic Nanocrystal by the Molecular Dynamics Method," Dokl. Akad. Nauk 483 (6), 616–619 (2018).

    Google Scholar 

  15. S. J. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics," J. Comput. Phys. 117, 1–9 (1995).

    Article  ADS  Google Scholar 

  16. R. R. Zope and Y. Mishin, “Interatomic Potentials for Atomistic Simulations of the Ti–Al Systems," Phys. Rev. B 68, 024102-1–024102-14 (2003).

    Article  ADS  Google Scholar 

  17. S. P. Kiselev, “Modeling of Crystallization of the Ti–Al Nanoparticle by the Molecular Dynamics Method," Dokl. Akad. Nauk 466 (4), 406–408 (2016).

    Google Scholar 

  18. S. J. Nose, “Unified Formulation of the Constant Temperature Molecular Dynamics Methods," Chem. Phys. 81, 511–519 (1984).

    Article  ADS  Google Scholar 

  19. S. P. Kiselev and V. P. Kiselev, “Numerical Simulation of Fracture of Titanium and Aluminum Nanocrystals by the Molecular Dynamics Method," Fiz. Goreniya Vzryva 57 (4), (2021) [Combust., Explos., Shock Waves 57 (4), (2021)].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Kiselev.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 3, pp. 71-79. https://doi.org/10.15372/PMTF20210307.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselev, S.P. NUMERICAL SIMULATION OF FRACTURE OF NANOCRYSTALS OF THE TiAl3 INTERMETALLIC COMPOUND BY THE MOLECULAR DYNAMICS METHOD. J Appl Mech Tech Phy 62, 411–418 (2021). https://doi.org/10.1134/S002189442103007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002189442103007X

Keywords

Navigation