Skip to main content
Log in

Global existence and time decay rates of the two-phase fluid system in \({\mathbb {R}}^3\)

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We are concerned with a two-phase fluid model in \({\mathbb {R}}^3\). This model was first derived by Choi (SIAM J. Math. Anal. 48: 3090–3122, 2016) by taking the hydrodynamic limit from the Vlasov–Fokker–Planck/isentropic Navier–Stokes equations with strong local alignment forces. Under the assumption that the \(H^3\) norm of the initial data is small but its higher-order Sobolev norm can be arbitrarily large, the global existence and uniqueness of classical solutions are obtained by an energy method. Moreover, if in addition, the initial data norm of the \(\dot{H}^{-s}(0\le s<\frac{3}{2})\) or \(\dot{B}^{-s}_{2,\infty }(0< s\le \frac{3}{2})\) is small, we also obtain the optimal time decay rates of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baranger, C., Desvillettes, L.: Coupling Euler and Vlasov equations in the context of sprays: The local-in-time, classical solutions. J. Hyperbolic Differ. Equ. 3, 1–26 (2006)

    Article  MathSciNet  Google Scholar 

  2. Carrillo, J.A., Choi, Y.P., Karper, T.K.: On the analysis of a coupled kinetic–fluid model with local alignment forces. Ann. Inst. H. Poincaré Analyse Non Linéaire, 33, 273–307 (2016)

  3. Chen, Q.: Optimal time decay rates for the compressible Navier–Stokes system. (preprint)

  4. Chen, Q., Tan, Z.: Time decay rates of solutions to the compressible Euler equations with damping. Kinet. Relat. Models 7, 605–619 (2014)

    Article  MathSciNet  Google Scholar 

  5. Choi, Y.P., Kwon, B.: The Cauchy problem for the pressureless/isentropic Navier-Stokes equations. J. Differ. Equ. 261, 654–711 (2016)

    Article  MathSciNet  Google Scholar 

  6. Choi, Y.P.: Global classical solutions and large-time behavior of the two-phase fluid model. SIAM J. Math. Anal. 48, 3090–3122 (2016)

    Article  MathSciNet  Google Scholar 

  7. Donatelli, D., Marcati, P.: A quasineutral type limit for the Navier-Stokes-Poisson system with large date. Nonlinearity 21, 135–148 (2008)

    Article  MathSciNet  Google Scholar 

  8. Duan, R., Liu, S.: Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinet. Relat. Models 6, 687–700 (2013)

    Article  MathSciNet  Google Scholar 

  9. Guo, Y., Wang, Y.J.: Decay of dissipative equations and negative Sobolev space. Comm. Part. Differ. Equ. 37, 2165–2208 (2012)

    Article  MathSciNet  Google Scholar 

  10. Ju, Q., Li, F., Li, H.: The quasineutral limit of compressible Navier-Stokes-Poisson system with heat conductivity and general initial data. J. Differ. Equ. 247, 203–224 (2009)

    Article  MathSciNet  Google Scholar 

  11. Karper, T., Mellet, A., Trivisa, K.: Existence of weak solutions to kinetic flocking models. SIAM J. Math. Anal. 45, 215–243 (2013)

    Article  MathSciNet  Google Scholar 

  12. Karper, T., Mellet, A., Trivisa, K.: Hydrodynamic limit of the kinetic Cucker-Smale flocking model. Math. Models Methods Appl. Sci. 25, 131–163 (2015)

    Article  MathSciNet  Google Scholar 

  13. Matsumura, A., Nishida, T.: The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A 55, 337–342 (1979)

    Article  MathSciNet  Google Scholar 

  14. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  15. Mellet, A., Vasseur, A.: Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations. Math. Models Methods Appl. Sci. 17, 1039–1063 (2007)

    Article  MathSciNet  Google Scholar 

  16. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  17. Sartory, W.K.: Three-component analysis of blood sedimentation by the method of characteristics. Math. Biosci. 33, 145–165 (1977)

    Article  Google Scholar 

  18. Sohinger, V., Strain, R.M.: The Boltzmann equation, Besov space, and optimal decay rates in \({\mathbb{R}}_{x}^n\). Adv. Math. 261, 274–332 (2014)

    Article  MathSciNet  Google Scholar 

  19. Tan, Z., Wang, Y., Xu, F.: Large-time behavior of the full compressible Euler-Poisson system without damping. Disc. Contin. Dyn. Syst. 36, 1583–1601 (2016)

    Article  MathSciNet  Google Scholar 

  20. Tan, Z., Wang, Y.J., Wang, Y.: Stability of steady states of the Navier-Stokes-Poisson equation with non-flat doping profile. SIAM J. Math. Anal. 47, 179–209 (2015)

    Article  MathSciNet  Google Scholar 

  21. Tory, E.M., Karlsen, K.H., Bürger, R., Berres, S.: Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM. J. Appl. Math. 64, 41–80 (2003)

    Article  MathSciNet  Google Scholar 

  22. Wang, S., Jang, T.: The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations. Comm. Part. Differ. Equ. 31, 571–591 (2006)

    Article  MathSciNet  Google Scholar 

  23. Williams, F.A.: Spray combustion and atomization. Phys. Fluids 1, 541–555 (1958)

    Article  Google Scholar 

  24. Wu, G.C., Zhang, Y.H., Zou, L.: Optimal large time behavior of the two-phase fluid model in the whole space. SIAM J. Math. Anal. 52, 5748–5774 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Guangxi Natural Science Foundation \(\#\)2019JJG110003, \(\#\)2019AC20214, \(\#\)2019JJA110071, and National Natural Science Foundation of China \(\#\)11771150, \(\#\)11571280, \(\#\)11301172 and \(\#\)11226170, and Innovation Project of Guangxi Graduate Education, \(\#\)XYCSZ2021012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lintao Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, J., Xiao, C. et al. Global existence and time decay rates of the two-phase fluid system in \({\mathbb {R}}^3\). Z. Angew. Math. Phys. 72, 180 (2021). https://doi.org/10.1007/s00033-021-01610-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01610-x

Keywords

Mathematics Subject Classification

Navigation