Skip to main content
Log in

X-Ray imager of 26-µm resolution achieved by perovskite assembly

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Spatial resolution is an important criterion to evaluate the performance of a scintillation screen for X-ray imaging. Perovskite-based X-ray screen, usually made of powders or polycrystalline films, suffers from low spatial resolution (∼ 200 µm) due to the large thickness of scintillation layer despite of their compelling sensitivity to X-ray dose. In this work, a concentrated colloid of CsPbBr3 nanosheets was synthesized via a co-precipitation method at ambient condition. By drop casting, smooth scintillation screens of varied thickness were formed through self-assembly, which exhibited both high internal and external photoluminescence quantum yield (PL QY) (84.5% and 75.1%, respectively). The screen-based X-ray detector showed a high sensitivity down to 27 nGy/s, two orders of magnitude lower than the regular dose for medical diagnostics. Importantly, the screen of optimal thickness of 15 µm showcased an unprecedented spatial resolution (26 µm) when used for X-ray radiography, representing one order of magnitude improvement in perovskite community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, Y.; Chen, J.; Bakr, O. M.; Mohammed, O. F. Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Lett. 2021, 6, 739–768.

    Article  CAS  Google Scholar 

  2. Wu, H. D.; Ge, Y. S.; Niu, G. D.; Tang, J. Metal halide perovskites for X-ray detection and imaging. Matter 2021, 4, 144–163.

    Article  CAS  Google Scholar 

  3. Zhang, Y. H.; Sun, R. J.; Ou, X. Y.; Fu, K. F.; Chen, Q. S.; Ding, Y. C.; Xu, L. J.; Liu, L. M.; Han, Y.; Malko, A. V. et al. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano 2019, 13, 2520–2525.

    Article  CAS  Google Scholar 

  4. Jang, J. K.; Ji, S.; Grandhi, G. K.; Cho, H. B.; Im, W. B.; Park, J. U. Multimodal digital X-ray scanners with synchronous mapping of tactile pressure distributions using perovskites. Adv. Mater. 2021, 33, 2008539.

    Article  CAS  Google Scholar 

  5. Su, Y. R.; Ma, W. B.; Yang, Y. Perovskite semiconductors for direct X-ray detection and imaging. J. Semicond. 2020, 41, 051204.

    Article  CAS  Google Scholar 

  6. Brenner, T. M.; Egger, D. A.; Kronik, L.; Hodes, G.; Cahen, D. Hybrid organic-inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 2016, 1, 15007.

    Article  CAS  Google Scholar 

  7. Chen, L.; Tang, F.; Wang, Y. X.; Gao, S.; Cao, W. G.; Cai, J. H.; Chen, L. W. Facile preparation of organometallic perovskite films and high-efficiency solar cells using solid-state chemistry. Nano Res. 2015, 8, 263–270.

    Article  CAS  Google Scholar 

  8. Liu, J. Y.; Shabbir, B.; Wang, C. J.; Wan, T.; Ou, Q. D.; Yu, P.; Tadich, A.; Jiao, X. C.; Chu, D. W.; Qi, D. C. et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv. Mater. 2019, 31, 1901644.

    Article  Google Scholar 

  9. Kasap, S. Low-cost X-ray detectors. Nat. Photon. 2015, 9, 420–421.

    Article  CAS  Google Scholar 

  10. Wei, W.; Zhang, Y.; Xu, Q.; Wei, H. T.; Fang, Y. J.; Wang, Q.; Deng, Y. H.; Li, T.; Gruverman, A.; Cao, L. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photon. 2017, 11, 315–321.

    Article  CAS  Google Scholar 

  11. Lecoq, P. Development of new scintillators for medical applications. Nucl. Instrum. Methods Phys. Res. A: Accelerat. Spectromet. Detect. Assoc. Equip. 2016, 809, 130–139.

    Article  CAS  Google Scholar 

  12. Ariesanti, E.; Hawrami, R.; Burger, A.; Motakef, S. Improved growth and scintillation properties of intrinsic, non-hygroscopic scintillator Cs2HfCl6. J. Lumin. 2020, 217, 116784.

    Article  CAS  Google Scholar 

  13. Büchele, P.; Richter, M.; Tedde, S. F.; Matt, G. J.; Ankah, G. N.; Fischer, R.; Biele, M.; Metzger, W.; Lilliu, S.; Bikondoa, O. et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nat. Photon. 2015, 9, 843–848.

    Article  Google Scholar 

  14. Yuan, Y. B.; Huang, J. S. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 2016, 49, 286–293.

    Article  CAS  Google Scholar 

  15. Yin, W. J.; Chen, H. Y.; Shi, T. T.; Wei, S. H.; Yan, Y. F. Origin of high electronic quality in structurally disordered CH3NH3PbI3 and the passivation effect of Cl and O at grain boundaries. Adv. Electron. Mater. 2015, 1, 1500044.

    Article  Google Scholar 

  16. Song, J. Z.; Cui, Q. Z.; Li, J. H.; Xu, J. Y.; Wang, Y.; Xu, L. M.; Xue, J.; Dong, Y. H.; Tian, T.; Sun, H. D. et al. Ultralarge all-inorganic perovskite bulk single crystal for high-performance visible-infrared dual-modal photodetectors. Adv. Opt. Mater. 2017, 5, 1700157.

    Article  Google Scholar 

  17. Dirin, D. N.; Cherniukh, I.; Yakunin, S.; Shynkarenko, Y.; Kovalenko, M. V. Solution-grown CsPbBr3 perovskite single crystals for photon detection. Chem. Mater. 2016, 28, 8470–8474.

    Article  CAS  Google Scholar 

  18. Eperon, G. E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 2015, 3, 19688–19695.

    Article  CAS  Google Scholar 

  19. Xu, Q.; Wang, X.; Zhang, H.; Shao, W. Y.; Nie, J.; Guo, Y.; Wang, J.; Ouyang, X. P. CsPbBr3 single crystal X-ray detector with schottky barrier for X-ray imaging application. ACS Appl. Electron. Mater. 2020, 2, 879–884.

    Article  CAS  Google Scholar 

  20. Chen, Q. S.; Wu, J.; Ou, X. Y.; Huang, B. L.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X. W.; Han, S. Y.; Liang, L. L.; Yi, Z. G. et al. All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88–93.

    Article  CAS  Google Scholar 

  21. Xin, B.; Pak, Y.; Mitra, S.; Almalawi, D.; Alwadai, N.; Zhang, Y. H.; Roqan, I. S. Self-patterned CsPbBr3 nanocrystals for highperformance optoelectronics. ACS Appl. Mater. Interfaces 2019, 11, 5223–5231.

    Article  CAS  Google Scholar 

  22. Park, Y. G.; Kim, H.; Park, S. Y.; Kim, J. Y.; Park, J. U. Instantaneous and repeatable self-healing of fully metallic electrodes at ambient conditions. ACS Appl. Mater. Interfaces 2019, 11, 41497–41505.

    Article  CAS  Google Scholar 

  23. Stampanoni, M.; Borchert, G.; Wyss, P.; Abela, R.; Patterson, B.; Hunt, S.; Vermeulen, D.; Rüegsegger, P. High resolution X-ray detector for synchrotron-based microtomography. Nucl. Instrum. Methods Phys. Res. A: Accelerat. Spectromet. Detect. Assoc. Equip. 2002, 491, 291–301.

    Article  CAS  Google Scholar 

  24. Di Stasio, F.; Christodoulou, S.; Huo, N. J.; Konstantatos, G. Near-unity photoluminescence quantum yield in CsPbBr3 nanocrystal solid-state films via postsynthesis treatment with lead bromide. Chem. Mater. 2017, 29, 7663–7667.

    Article  Google Scholar 

  25. Kojima, K.; Ikemura, K.; Matsumori, K.; Yamada, Y.; Kanemitsu, Y.; Chichibu, S. F. Internal quantum efficiency of radiation in a bulk CH3NH3PbBr3 perovskite crystal quantified by using the omnidirectional photoluminescence spectroscopy. APL Mater. 2019, 7, 071116.

    Article  Google Scholar 

  26. Zhang, D. Q.; Gu, L. L.; Zhang, Q. P.; Lin, Y. J.; Lien, D. H.; Kam, M.; Poddar, S.; Garnett, E. C.; Javey, A.; Fan, Z. Y. Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays. Nano Lett. 2019, 19, 2850–2857.

    Article  CAS  Google Scholar 

  27. Lin, Q. Q.; Armin, A.; Lyons, D. M.; Burn, P. L.; Meredith, P. Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. Adv. Mater. 2015, 27, 2060–2064.

    Article  CAS  Google Scholar 

  28. Wang, C. Y.; Liang, P.; Xie, R. J.; Yao, Y.; Liu, P.; Yang, Y. T.; Hu, J.; Shao, L. Y.; Sun, X. W.; Kang, F. Y. et al. Highly efficient lead-free (Bi, Ce)-codoped Cs2Ag0.4Na0.6InCl6 double perovskites for white light-emitting diodes. Chem. Mater. 2020, 32, 7814–7821.

    Article  CAS  Google Scholar 

  29. Akkerman, Q. A.; Motti, S. G.; Kandada, A. R. S.; Mosconi, E.; D’Innocenzo, V.; Bertoni, G.; Marras, S.; Kamino, B. A.; Miranda, L.; De Angelis, F. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 2016, 138, 1010–1016.

    Article  CAS  Google Scholar 

  30. Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

    Article  CAS  Google Scholar 

  31. Takeoka, Y.; Asai, K.; Rikukawa, M.; Sanui, K. Systematic studies on chain lengths, halide species, and well thicknesses for lead halide layered perovskite thin films. Bull. Chem. Soc. Jpn. 2006, 79, 1607–1613.

    Article  CAS  Google Scholar 

  32. Jagielski, J.; Kumar, S.; Wang, M. C.; Scullion, D.; Lawrence, R.; Li, Y. T.; Yakunin, S.; Tian, T.; Kovalenko, M. V.; Chiu, Y. C. et al. Aggregation-induced emission in lamellar solids of colloidal perovskite quantum wells. Sci. Adv. 2017, 3, eaaq0208.

    Article  Google Scholar 

  33. Wang, Y. W.; Zhu, Y. H.; Huang, J. F.; Cai, J.; Zhu, J. R.; Yang, X. L.; Shen, J. H.; Jiang, H.; Li, C. Z. CsPbBr3 perovskite quantum dots-based monolithic electrospun fiber membrane as an ultrastable and ultrasensitive fluorescent sensor in aqueous medium. J. Phys. Chem. Lett. 2016, 7, 4253–4258.

    Article  CAS  Google Scholar 

  34. Rainò, G.; Becker, M. A.; Bodnarchuk, M. I.; Mahrt, R. F.; Kovalenko, M. V.; Stöferle, T. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 2018, 563, 671–675.

    Article  Google Scholar 

  35. Shearer, D. R.; Bopaiah, M. Dose rate limitations of integrating survey meters for diagnostic X-ray survevs. Health Phys. 2000, 79, S20–S21.

    Article  CAS  Google Scholar 

  36. Clairand, I.; Bordy, J. M.; Carinou, E.; Daures, J.; Debroas, J.; Denozière, M.; Donadille, L.; Ginjaume, M.; Itié, C.; Koukorava, C. et al. Use of active personal dosemeters in interventional radiology and cardiology: Tests in laboratory conditions and recommendations-ORAMED project. Radiat. Meas. 2011, 46, 1252–1257.

    Article  CAS  Google Scholar 

  37. Zhu, W. J.; Ma, W. B.; Su, Y. R.; Chen, Z.; Chen, X. Y.; Ma, Y. G.; Bai, L. Z.; Xiao, W. G.; Liu, T. Y.; Zhu, H. M. et al. Low-dose realtime X-ray imaging with nontoxic double perovskite scintillators. Light: Sci. Appl. 2020, 9, 112.

    Article  CAS  Google Scholar 

  38. Xie, A. Z.; Hettiarachchi, C.; Maddalena, F.; Witkowski, M. E.; Makowski, M.; Drozdowski, W.; Arramel, A.; Wee, A. T. S.; Springham, S. V.; Vuong, P. Q. et al. Lithium-doped two-dimensional perovskite scintillator for wide-range radiation detection. Commun. Mater. 2020, 1, 37.

    Article  Google Scholar 

  39. Liu, Y. C.; Zhang, Y. X.; Yang, Z.; Cui, J.; Wu, H. D.; Ren, X. D.; Zhao, K.; Feng, J. S.; Tang, J.; Xu, Z. et al. Large lead-free perovskite single crystal for high-performance coplanar X-ray imaging applications. Adv. Opt. Mater. 2020, 8, 2000814.

    Article  CAS  Google Scholar 

  40. Song, X.; Cui, Q. Y.; Liu, Y. C.; Xu, Z.; Cohen, H.; Ma, C.; Fan, Y. Y.; Zhang, Y. X.; Ye, H. C.; Peng, Z. H. et al. Metal-free halide perovskite single crystals with very long charge lifetimes for efficient X-ray imaging. Adv. Mater. 2020, 32, 2003353.

    Article  CAS  Google Scholar 

  41. Cho, S.; Kim, S.; Kim, J.; Jo, Y.; Ryu, I.; Hong, S.; Lee, J. J.; Cha, S.; Nam, E. B.; Lee, S. U. et al. Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators. Light: Sci. Appl. 2020, 9, 156.

    Article  Google Scholar 

  42. Heo, J. H.; Shin, D. H.; Park, J. K.; Kim, D. H.; Lee, S. J.; Im, S. H. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater. 2018, 30, 1801743.

    Article  Google Scholar 

  43. Yang, B.; Pan, W. C.; Wu, H. D.; Niu, G. D.; Yuan, J. H.; Xue, K. H.; Yin, L. X.; Du, X. Y.; Miao, X. S.; Yang, X. Q. et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat. Commun. 2019, 10, 1989.

    Article  Google Scholar 

  44. Cao, J. T.; Guo, Z.; Zhu, S.; Fu, Y. Y.; Zhang, H.; Wang, Q.; Gu, Z. J. Preparation of lead-free two-dimensional-layered (C8H17NH3)2SnBr4 perovskite scintillators and their application in X-ray imaging. ACS Appl. Mater. Interfaces 2020, 12, 19797–19804.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 21805111), Natural Science Foundation of Shandong Province (No. ZR2020YQ12), and Taishan Scholar Project of Shandong Province (No. tsqn201812082).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Depeng Shen, Yuhai Zhang or Hong Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Sun, R., Liu, N. et al. X-Ray imager of 26-µm resolution achieved by perovskite assembly. Nano Res. 15, 2399–2404 (2022). https://doi.org/10.1007/s12274-021-3808-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3808-y

Keywords

Navigation