Skip to main content
Log in

One-dimensional iridium-based nanowires for efficient water electrooxidation and beyond

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The sluggish reaction kinetics of oxygen evolution reaction (OER) has largely lowered the efficiency of electrochemical water splitting. Ir represents one of the state-of-the-art electrocatalysts for promoting OER especially in acidic electrolytes. However, it remains a formidable challenge to synthesize high-quality one-dimensional (1D) Ir-based nanostructures for improved electrocatalytic performance. Herein, a template-assisted synthesis method is reported wherein 1D porous Ir-Te nanowires (Ir-Te NWs) are synthesized with Te NWs serving as the template. The Ir-Te NWs exhibit highly enhanced OER performance compared to commercial IrO2 and Ir/C. In detail, the overpotentials to reach 10 mA·cm−2 are 248 and 284 mV in 1 M KOH and 0.5 M H2SO4, respectively, much lower than those of commercial catalysts. The Ir-Te NWs also show smaller Tafel slopes than commercial IrO2 and Ir/C, signifying faster reaction kinetics. Besides, much more durable OER activity can be maintained for Ir-Te NWs with negligible decay during 25 and 20 h stability tests in 1 M KOH and 0.5 M H2SO4, respectively. Further analysis indicates that the significantly improved OER performance of Ir-Te NWs could be ascribed to the larger electrochemical surface area and smaller electrical resistance. More significantly, the templated synthesis of Ir-Te NWs can be facilely extended to the fabrication of other metal-Te NWs including Ru-Te, Rh-Te and Pt-Te NWs. The design and synthesis of 1D metal-based NWs in this work provide important inspiration for the synthesis of diversified 1D metallic nanostructures with distinctly enhanced catalytic performance and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    CAS  Google Scholar 

  2. Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. The hydrogen economy. Phys. Today 2004, 57, 39–44.

    Article  CAS  Google Scholar 

  3. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  CAS  Google Scholar 

  4. Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106

    Article  CAS  Google Scholar 

  5. Wei, Z. H.; Sun, J. M.; Li, Y.; Datye, A. K.; Wang, Y. Bimetallic catalysts for hydrogen generation. Chem. Soc. Rev. 2012, 41, 7994–8008.

    Article  CAS  Google Scholar 

  6. Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

    Article  CAS  Google Scholar 

  7. Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

    Article  CAS  Google Scholar 

  8. Li, L. G.; Shao, Q.; Huang, X. Q. Amorphous oxide nanostructures for advanced electrocatalysis. Chem. Eur. J. 2020, 26, 3943–3960.

    CAS  Google Scholar 

  9. Cheng, Z. F.; Huang, B. L.; Pi, Y. C.; Li, L. G.; Shao, Q.; Huang, X. Q. Partially hydroxylated ultrathin iridium nanosheets as efficient electrocatalysts for water splitting. Natl. Sci. Rev. 2020, 7, 1340–1348.

    Article  CAS  Google Scholar 

  10. Xu, H. T.; Liu, T. Y.; Bai, S. X.; Li, L. G.; Zhu, Y. M.; Wang, J.; Yang, S. Z.; Li, Y. F.; Shao, Q.; Huang, X. Q. Cation exchange strategy to single-atom noble-metal doped CuO nanowire arrays with ultralow overpotential for H2O splitting. Nano Lett. 2020, 20, 5482–5489.

    Article  CAS  Google Scholar 

  11. Pi, Y. C.; Shao, Q.; Zhu, X.; Huang, X. Q. Dynamic structure evolution of composition segregated iridium-nickel rhombic dodecahedra toward efficient oxygen evolution electrocatalysis. ACS Nano 2018, 12, 7371–7379.

    Article  CAS  Google Scholar 

  12. Pi, Y. C.; Zhang, N.; Guo, S. J.; Guo, J.; Huang, X. Q. Ultrathin laminar Ir superstructure as highly efficient oxygen evolution electrocatalyst in broad pH range. Nano Lett. 2016, 16, 4424–4430.

    Article  CAS  Google Scholar 

  13. Pi, Y. C.; Shao, Q.; Wang, P. T.; Guo, J.; Huang, X. Q. General formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting. Adv. Funct. Mater. 2017, 27, 1700886.

    Article  Google Scholar 

  14. Pi, Y. C.; Guo, J.; Shao, Q.; Huang, X. Q. Highly efficient acidic oxygen evolution electrocatalysis enabled by porous Ir-Cu nanocrystals with three-dimensional electrocatalytic surfaces. Chem. Mater. 2018, 30, 8571–8578.

    Article  CAS  Google Scholar 

  15. Garnett, E.; Mai, L. Q.; Yang, P. D. Introduction: 1D nanomaterials/nanowires. Chem. Rev. 2019, 119, 8955–8957.

    Article  CAS  Google Scholar 

  16. Xu, H.; Shang, H. Y.; Wang, C.; Du, Y. K. Ultrafine Pt-based nanowires for advanced catalysis. Adv. Funct. Mater. 2020, 30, 2000793.

    Article  CAS  Google Scholar 

  17. Hyun, J. K.; Zhang, S. X.; Lauhon, L. J. Nanowire heterostructures. Annu. Rev. Mater. Res. 2013, 43, 451–479.

    Article  CAS  Google Scholar 

  18. Li, J.; Zheng, G. F. One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv. Sci. 2017, 4, 1600380.

    Article  Google Scholar 

  19. Xia, B. Y.; Wu, H. B.; Yan, Y.; Lou, X. W.; Wang, X. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 2013, 135, 9480–9485.

    Article  CAS  Google Scholar 

  20. Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

    Article  CAS  Google Scholar 

  21. Bu, L. Z.; Ding, J. B.; Guo, S. J.; Zhang, X.; Su, D.; Zhu, X.; Yao, J. L.; Guo, J.; Lu, G.; Huang, X. Q. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv. Mater. 2015, 27, 7204–7212.

    Article  CAS  Google Scholar 

  22. Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.

    Article  CAS  Google Scholar 

  23. Luo, M. C.; Sun, Y. J.; Zhang, X.; Qin, Y. N.; Li, M. Q.; Li, Y. J.; Li, C. J.; Yang, Y.; Wang, L.; Gao, P. et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater. 2018, 30, 1705515.

    Article  Google Scholar 

  24. Wang, J.; Ji, Y. J.; Yin, R. G.; Li, Y. Y.; Shao, Q.; Huang, X. Q. Transition metal-doped ultrathin RuO2 networked nanowires for efficient overall water splitting across a broad pH range. J. Mater. Chem. A 2019, 7, 6411–6416.

    Article  CAS  Google Scholar 

  25. Zhang, L. Q.; Liu, L. C.; Wang, H. D.; Shen, H. X.; Cheng, Q.; Yan, C.; Park, S. Electrodeposition of rhodium nanowires arrays and their morphology-dependent hydrogen evolution activity. Nanomaterials 2017, 7, 103.

    Article  Google Scholar 

  26. Liang, H. W.; Liu, S.; Gong, J. Y.; Wang, S. B.; Wang, L.; Yu, S. H. Ultrathin Te nanowires: An excellent platform for controlled synthesis of ultrathin platinum and palladium nanowires/nanotubes with very high aspect ratio. Adv. Mater. 2009, 21, 1850–1854.

    Article  CAS  Google Scholar 

  27. Wang, S.; Chen, K. F.; Wang, M.; Li, H. S.; Chen, G. R.; Liu, J.; Xu, L. H.; Jian, Y.; Meng, C. D.; Zheng, X. Y. et al. Controllable synthesis of nickel nanowires and its application in high sensitivity, stretchable strain sensor for body motion sensing. J. Mater. Chem. C 2018, 6, 4737–4745.

    Article  CAS  Google Scholar 

  28. Narayanan, T. N.; Shaijumon, M. M.; Ci, L. J.; Ajayan, P. M.; Anantharaman, M. R. On the growth mechanism of nickel and cobalt nanowires and comparison of their magnetic properties. Nano Res. 2008, 1, 465–473.

    Article  CAS  Google Scholar 

  29. Huang, X. Q.; Chen, Y.; Chiu, C. Y.; Zhang, H.; Xu, Y. X.; Duan, X. F.; Huang, Y. A versatile strategy to the selective synthesis of Cu nanocrystals and the in situ conversion to CuRu nanotubes. Nanoscale 2013, 5, 6284–6290.

    Article  CAS  Google Scholar 

  30. Qian, H. S.; Yu, S. H.; Gong, J. Y.; Luo, L. B.; Fei, L. F. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 2006, 22, 3830–3835.

    Article  CAS  Google Scholar 

  31. Li, Z. L.; Zheng, S. Q.; Zhang, Y. Z.; Teng, R. Y.; Huang, T.; Chen, C. F.; Lu, G. W. Controlled synthesis of tellurium nanowires and nanotubes via a facile, efficient, and relatively green solution phase method. J. Mater. Chem. A 2013, 1, 15046–15052.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Nos. 2017YFA0208200 and 2016YFA0204100), the National Natural Science Foundation of China (No. 22025108), and the start-up supports from Xiamen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, P., Cheng, Z. et al. One-dimensional iridium-based nanowires for efficient water electrooxidation and beyond. Nano Res. 15, 1087–1093 (2022). https://doi.org/10.1007/s12274-021-3603-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3603-9

Keywords

Navigation