Skip to main content
Log in

Using Flavivirus-Specific Monoclonal Antibodies to Study the Antigenic Structure of Flaviviruses and Develop Anti-Flavivirus Drugs

  • REVIEWS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Flaviviruses, the viruses in the Flavivirus genus, Flaviviridae family, cause diseases with varying degrees of severity in human beings, including fevers (Yellow fever, Dengue fever, West Nile fever, Zika fever, etc.) and encephalites (tick-borne encephalitis, Japanese encephalitis, Powassan encephalitis, etc.). Preventive vaccines have been produced against only some of these infectious agents, with their development being mainly hindered by the neurovirulence of flaviviruses, as well as by a long-known phenomenon, namely, the antibody-dependent enhancement (ADE) of infection characteristic of these viruses. The use of serum therapy in the case of flaviviruses has several limitations. Donor blood. which serves as a raw material to obtain specific immunoglobulins, is always a limited resource, and different blood samples are not standardized by the level of protective antibodies they contain. The risk of ADE is also a significant limitation. A number of technologies are currently available that allow searching for antibodies with desired biological characteristics, such as high efficiency and broad neutralization ability with no ADE induction. This paper discusses the monoclonal antibodies obtained using cell engineering techniques including hybridoma mouse, recombinant chimeric (humanized) mouse/human or primate/human, and recombinant wholly human antibodies, which are currently studied in vitro and in vivo as potential therapeutic agents inhibiting the entry of flaviviruses into sensitive host cells and/or restricting their replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L’vov, D.K., Alekseev, K.P., Alimbarova, L.M., Aliper, T.I., Al’khovskii, S.V., Andronova, V.L., et al., Rukovodstvo po virusologii (Virology Guide), Moscow: Meditsinskoe Informatsionnoe Agentstvo, 2013.

  2. Grard, G., Moureau, G., Charrel, R.N., Holmes, E.C., Gould, E.A., and de Lamballerie, X., Genomics and evolution of Aedes-borne flaviviruses, J. Gen. Virol., 2010, vol. 91, part 1, pp. 87–94.

    Article  CAS  Google Scholar 

  3. International Committee on Taxonomy of Viruses, ICTV. https://talk.ictvonline.org/taxonomy. Accessed May 5, 2020.

  4. Tsai, W.Y., Lin, H.E., and Wang, W.K., Complexity of human antibody response to dengue virus: Implication for vaccine development, Front. Microbiol., 2017, vol. 8, p. 1372. https://doi.org/10.3389/fmicb.2017.01372

    Article  PubMed  PubMed Central  Google Scholar 

  5. Musso, D. and Gubler, D.J., Zika virus, Clin. Microbiol. Rev., 2016, vol. 29, pp. 487–524. https://doi.org/10.1128/CMR.00072-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Putintseva, E.V., Smelyanskii, V.P., Pak, V.A., Borodai, N.V., Zhukov, K.V., Manankov, V.V., et al., Epidemic Situation on West-Nile fever in 2014 in the territory of the Russian Federation and around the world, and prognosis for its development in 2015, Probl. Osobo Opasnykh Infekts., 2015, no. 1, pp. 29—36.

  7. Putintseva, E.V., Smelyanskii, V.P., Borodai, N.V., Manankov, V.V., Tkachenko, G.A., Shpak, I.M., et al., West Nile fever across the world and on the territory of the Russian Federation in 2015, forecast of the epidemic situation development in 2016, Probl. Osobo Opasnykh Infekts., 2017, no. 1, pp. 29–36. https://doi.org/10.21055/0370-1069-2016-1-33-39

  8. Putintseva, E.V., Smelyanskii, V.P., Borodai, N.V., Alekseichik, I.O., Shakhov, L.O., Tkachenko, G.A., et al., West Nile fever worldwide and in the territory of the Russian Federation in 2016, and forecast of epidemic situation development in 2017, Probl. Osobo Opasnykh Infekts., 2017, vol. 1, pp. 29–36. https://doi.org/10.21055/0370-1069-2017-1-29-36

    Article  Google Scholar 

  9. Putintseva, E.V., Smelyanskii, V.P., Alekseychik, I.O., Borodai, N.V., Chesnokova, S.N., Alieva, A.K., et al., Results of monitoring over the West Nile fever pathogen in the territory of the Russian Federation in 2017. Forecast of epidemic situation development in Russia in 2018, Probl. Osobo Opasnykh Infekts., 2018, vol. 28, no. 1, pp. 56–62. https://doi.org/10.21055/0370-1069-2018-1-56-62

    Article  Google Scholar 

  10. Alekseychik, I.O., Putintseva, E.V., Smelyanskii, V.P., Boroday, N.V., Alieva, A.K., Agarkova, E.A., et al., Peculiarities of the epidemic situation on West Nile fever in the territory of the Russian Federation in 2018 and forecast of its development in 2019, Probl. Partic. Dangerous Infect., 2019, no. 1, pp. 17–25. https://doi.org/10.21055/0370-1069-2019-1-17-25

  11. Center for Disease Control and Prevention, CDC. https://www.cdc.gov/westnile/statsmaps/preliminarymapsdata2019/index.html. Accessed May 5, 2020.

  12. Baikov, I.K., Development and research of recombinant antibodies against tick borne encephalitis virus, Cand. Sci. (Med.) Dissertation, Novosibirsk, 2015.

  13. Li, Y., Hou, L., Ye, J., Liu, X., Dan, H., Jin, M., et al., Development of a convenient immunochromatographic strip for the diagnosis of infection with Japanese encephalitis virus in swine, J. Virol. Methods, 2010, vol. 168, nos. 1–2, pp. 51–56. https://doi.org/10.1016/j.jviromet.2010.04.015

    Article  CAS  PubMed  Google Scholar 

  14. Saifullin, M.A., Clinical and laboratory characteristic of imported cases of Dengue Hemorrhagic Fever, Cand. Sci. (Med.) Dissertation, Moscow, 2017. https://www.dissercat.com/content/kliniko-laboratornaya-kharakteristika-zavoznykh-sluchaev-likhoradki-denge. Accessed September 9, 2019.

  15. Sikka, V., Chattu, V.K., Popli, R.K., Galwankar, S.C., Kelkar, D., Sawicki, S.G., et al., The emergence of zika virus as a global health security threat: A review and a consensus statement of the INDUSEM Joint working Group (JWG), J. Global Infect. Dis., 2016, vol. 8, no. 1, pp. 3–15. https://doi.org/10.4103/0974-777X.176140

    Article  Google Scholar 

  16. Fox, J.P., Fonseca da Cunha, J., and Kossobudzki, S.L., Additional observations on the duration of humoral immunity following vaccination with the 17D strain of yellow fever virus, Am. J. Hyg., 1948, vol. 47, no. 1, pp. 64–70. https://doi.org/10.1093/oxfordjournals.aje.a119186

    Article  CAS  PubMed  Google Scholar 

  17. Durbin, A. and Wilder-Smith, A., An update on Zika vaccine developments, Expert Rev. Vaccines, 2017, vol. 16, no. 8, pp. 781–787. https://doi.org/10.1080/14760584.2017.1345309

    Article  CAS  PubMed  Google Scholar 

  18. Morozova, O.V., Isaeva, E.I., and Vyazov, S.O., New approaches to the treatment of flavivirus infections, Vopr. Virusol., 2015, vol. 60, no. 6, pp. 5–9. https://cyberleninka.ru/article/v/novye-podhody-k-lecheniyu-flavivirusnyh-infektsiy. Accessed September 9, 2019.

    CAS  PubMed  Google Scholar 

  19. Priyamvada, L., Quicke, K.M., Hudson, W.H., Onlamoon, N., Sewatanon, J., Edupuganti, S., et al., Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, no. 28, pp. 7852–7857. https://doi.org/10.1073/pnas.1607931113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu, L., Wang, R., Gao, F., Li, M., Liu, J., Wang, J., et al., Delineating antibody recognition against Zika virus during natural infection, JCI Insight, 2017, vol. 2, no. 12, pp. 1–16. https://doi.org/10.1172/jci.insight.93042

    Article  Google Scholar 

  21. Köhler, G. and Milstein, C., Continuous cultures of fused cells secreting antibody of predefined specificity, Nature, 1975, vol. 256, no. 5517, pp. 495–497. https://doi.org/10.1038/256495a0

    Article  PubMed  Google Scholar 

  22. Deev, S.M. and Polyanovskii, O.L., Monoclonal antibodies for diagnosis and therapy, Biotekhnologiya, 2008, vol. 2, pp. 3–13.

    Google Scholar 

  23. Nikolenko, G.N., Development of recombinant antibodies against tick borne encephalitis virus and research of their properties, Cand. Sci. (Med.) Dissertation, Kol’tsovo, 1999. https://www.dissercat.com/content/sozdanie-rekombinantnykh-antitel-protiv-virusa-kleshchevogo-entsefalita-i-izuchenie-ikh-svoistv. Accessed September 9, 2019.

  24. Pereboev, A., Borisevich, V., Tsuladze, G., Shakhmatov, M., Hudman, D., Kazachinskaia, E., et al., Genetically delivered antibody protects against West Nile virus, Antiviral Res., 2008, vol. 77, no. 1, pp. 6–13. https://doi.org/10.1016/j.antiviral.2007.08.010

    Article  CAS  PubMed  Google Scholar 

  25. Levanov, L.N., Matveev, L.E., Goncharova, E.P., Lebedev, L.R., Ryzhikov, A.B., Yun, T.E., et al., Chimeric antibodies against tick-borne encephalitis virus, Vaccine, 2010, vol. 28, no. 32, pp. 5265–5271. https://doi.org/10.1016/j.vaccine.2010.05.060

    Article  CAS  PubMed  Google Scholar 

  26. Cockburn, J.J.B., Navarro Sanchez, M.E., Fretes, N., Urvoas, A., Staropoli, I., Kikuti, C.M., et al., Mechanism of dengue virus broad cross-neutralization by a monoclonal antibody, Structure, 2012, vol. 20, no. 2, pp. 303–314. https://doi.org/10.1016/j.str.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  27. Smith, S.A., de Alwis, A.R., Kose, N., Harris, E., Ibarra, K.D., Kahle, K.M., et al., The potent and broadly neutralizing human dengue virus-specific monoclonal antibody 1C19 reveals a unique cross-reactive epitope on the bc loop of domain II of the envelope protein, MBio, 2013, vol. 4, no. 6, p. e00873-13. https://doi.org/10.1128/mBio.00873-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lai, C.J., Goncalvez, A.P., Men, R., Wernly, C., Donau, O., Engle, R.E., et al., Epitope determinants of a chimpanzee dengue virus type 4 (DENV-4)-neutralizing antibody and protection against DENV-4 challenge in mice and rhesus monkeys by passively transferred humanized antibody, J. Virol., 2007, vol. 81, no. 23, pp. 12766–12774. https://doi.org/10.1128/JVI.01420-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Throsby, M., Geuijen, C., Goudsmit, J., Bakker, A.Q., Korimbocus, J., Kramer, R.A., et al., Isolation and characterization of human monoclonal antibodies from individuals infected with West Nile virus, J. Virol., 2006, vol. 80, no. 14, pp. 6982–6992. https://doi.org/10.1128/JVI.00551-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hasan, S.S., Miller, A., Sapparapu, G., Fernandez, E., Klose, T., Long, F., et al., A human antibody against Zika virus crosslinks the E protein to prevent infection, Nat. Commun., 2017, vol. 8, no. 1, p. 14722. https://doi.org/10.1038/ncomms14722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Adungo, F., Yu, F., Kamau, D., Inoue, S., Hayasaka, D., Posadas-Herrera, G., et al., Development and characterization of monoclonal antibodies to yellow fever virus and application in antigen detection and IgM capture enzyme-linked immunosorbent assay, Clin. Vaccine Immunol., 2016, vol. 23, no. 8, pp. 689–697. https://doi.org/10.1128/CVI.00209-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Davis, E.H. and Barrett, A.D.T., Structure-function of the yellow fever virus envelope protein: Analysis of antibody epitopes, Viral Immunol., 2020, vol. 33, no. 1, pp. 12–21. https://doi.org/10.1089/vim.2019.0107

    Article  CAS  PubMed  Google Scholar 

  33. Thibodeaux, B.A., Garbino, N.C., Liss, N.M., Piper, J., Schlesinger, J.J., Blair, C.D., et al., A humanized IgG but not IgM antibody is effective in prophylaxis and therapy of yellow fever infection in an AG129/17D-204 peripheral challenge mouse model, Antiviral Res., 2012, vol. 94, no. 1, pp. 1–8. https://doi.org/10.1016/j.antiviral.2012.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. The U.S. National Library of Medicine. https://clinicalttrials.gov/ct2/show/NCT03776786. Accessed May 5, 2020.

  35. Tomashek, K.M., Challberg, M., Nayak, S.U., and Schiltz, H.F., Disease resurgence, production capability issues and safety concerns in the context of an aging population: Is there a need for a new yellow fever vaccine?, Vaccines, 2019, vol. 7, no. 4, p. 179. https://doi.org/10.3390/vaccines7040179

    Article  CAS  PubMed Central  Google Scholar 

  36. Crill, W.D. and Roehrig, J.T., Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells, J. Virol., 2001, vol. 75, no. 16, pp. 7769–7773. https://doi.org/10.1128/JVI.75.16.7769-7773.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shrestha, B., Brien, J.D., Sukupolvi-Petty, S., Austin, S.K., Edeling, M.A., Kim, T., et al., The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1, PLoS Pathog., 2010, vol. 6, no. 4, p. e1000823. https://doi.org/10.1371/journal.ppat.1000823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun, H., Chen, Q., and Lai, H., Development of antibody therapeutics against flaviviruses, Int. J. Mol. Sci., 2017, vol. 19, no. 1, p. 54. https://doi.org/10.3390/ijms19010054

    Article  CAS  PubMed Central  Google Scholar 

  39. Dai, L., Song, J., Lu, X., Deng, Y.Q., Musyoki, A.M., Cheng, H., et al., Structures of the Zika virus envelope protein and its complex with a flavivirus broadly protective antibody, Cell Host Microbe, 2016, vol. 19, no. 5, pp. 696–704. https://doi.org/10.1016/j.chom.2016.04.013

    Article  CAS  PubMed  Google Scholar 

  40. Wong, Y.H., Kumar, A., Liew, C.W., Tharakaraman, K., Srinivasaraghavan, K., Sasisekharan, R., et al., Molecular basis for dengue virus broad cross-neutralization by humanized monoclonal antibody, Sci. Rep., vol. 8, no. 1, pp. 1–17. https://doi.org/10.1038/s41598-018-26800-y

  41. Goncalvez, A.P., Men, R., Wernly, C., Purcell, R.H., and Lai, C.J., Chimpanzee Fab fragments and a derived humanized immunoglobulin G1 antibody that efficiently cross-neutralize dengue type 1 and type 2 viruses, J. Virol., 2004, vol. 78, no. 23, pp. 12910–12918. https://doi.org/10.1128/JVI.78.23.12910-12918.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dejnirattisai, W., Wongwiwat, W., Supasa, S., Zhang, X., Dai, X., Rouvinski, A., et al., A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus, Nat. Immunol., 2015, vol. 16, no. 2, pp. 170–177. https://doi.org/10.1038/ni.3058

    Article  CAS  PubMed  Google Scholar 

  43. Omi, N., Tokuda, Y., Ikeda, Y., Ueno, M., Mori, K., Sotozono, C., et al., Efficient and reliable establishment of lymphoblastoid cell lines by Epstein–Barr virus transformation from a limited amount of peripheral blood, Sci. Rep., 2017, vol. 7, no. 1, p. 43833. https://doi.org/10.1038/srep43833

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lok, S.M., Kostyuchenko, V., Nybakken, G.E., Holdaway, H.A., Battisti, A.J., and Sukupolvi-Petty, S., Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins, Nat. Struct. Mol. Biol., 2008, vol. 15, no. 3, pp. 312–317. https://doi.org/10.1038/nsmb.1382

    Article  CAS  PubMed  Google Scholar 

  45. Fibriansah, G., Ibarra, K.D., Ng, T.S., Smith, S.A., Tan, J.L., Lim, X.N., et al., Cryo-EM structure of an antibody that neutralizes dengue virus type 2 by locking E protein dimers, Science, 2015, vol. 349, no. 6243, pp. 88–91. https://doi.org/10.1126/science.aaa8651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Teoh, E.P., Kukkaro, P., Teo, E.W., Lim, A.P., Tan, T.T., Yip, A., et al., The structural basis for serotype-specific neutralization of dengue virus by a human antibody, Sci. Transl. Med., 2012, vol. 4, no. 139, p. 139ra83. https://doi.org/10.1126/scitranslmed.3003888

    Article  CAS  PubMed  Google Scholar 

  47. Li, P.C., Liao, M.Y., Cheng, P.C., Liang, J.J., Liu, I.J., Chiu, C.Y., et al., Development of a humanized antibody with high therapeutic potential against dengue virus type 2, PLoS Neglected Trop. Dis., 2012, vol. 6, no. 5, p. e1636. https://doi.org/10.1371/journal.pntd.0001636

    Article  CAS  Google Scholar 

  48. Shi, X., Deng, Y., Wang, H., Ji, G., Tan, W., Jiang, T., et al., A bispecific antibody effectively neutralizes all four serotypes of dengue virus by simultaneous blocking virus attachment and fusion, MAbs, 2016, vol. 8, no. 3, pp. 574–584. https://doi.org/10.1080/19420862.2016.1148850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. The U.S. National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT04273217?term=antibody& cond=Dengue&draw=6&rank=48. Accessed May 5, 2020.

  50. Gore, M.M., Gupta, A.K., Ayachit, V.M., Athawale, S.S., Ghosh, S.N., Banerjee, K., et al., Selection of a neutralization-escape variant strain of Japanese encephalitis virus using monoclonal antibody, Indian J. Med. Res., 1990, vol. 91, pp. 231–233. https://www.ncbi. nlm.nih.gov/pubmed/1697849. Accessed May 5, 2020.

    CAS  PubMed  Google Scholar 

  51. Goncalvez, A.P., Chien, C.H., Tubthong, K., Gorshkova, I., Roll, C., Donau, O., et al., Humanized monoclonal antibodies derived from chimpanzee Fabs protect against Japanese encephalitis virus in vitro and in vivo, J. Virol., 2008, vol. 82, no. 14, pp. 7009–7021. https://doi.org/10.1128/JVI.00291-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Razumov, I.A., Kazachinskaia, E.I., Ternovoi, V.A., Protopopova, E.V., Galkina, I.V., Gromashevskii, V.L., et al., Neutralizing monoclonal antibodies against Russian strain of the West Nile virus, Viral Immunol., 2005, vol. 18, no. 3, pp. 558–568. https://doi.org/10.1089/vim.2005.18.558

    Article  CAS  PubMed  Google Scholar 

  53. Oliphant, T., Engle, M., Nybakken, G.E., Doane, C., Johnson, S., Huang, L., et al., Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus, Nat. Med., 2005, vol. 11, no. 5, pp. 522–530. https://doi.org/10.1038/nm1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun, H., Chen, Q., and Lai, H., Development of antibody therapeutics against flaviviruses, Int. J. Mol. Sci., 2018, vol. 19, no. 1, p. 54. https://doi.org/10.3390/ijms19010054

    Article  CAS  Google Scholar 

  55. Nybakken, G.E., Oliphant, T., Johnson, S., Burke, S., Diamond, M.S., Fremont, D.H., et al., Structural basis of West Nile virus neutralization by a therapeutic antibody, Nature, 2005, vol. 437, no. 7059, pp. 764–769. https://doi.org/10.1038/nature03956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oliphant, T., Nybakken, G.E., Austin, S.K., Xu, Q., Bramson, J., Loeb, M., et al., Induction of epitope-specific neutralizing antibodies against West Nile virus, J. Virol., 2007, vol. 81, no. 21, pp. 11828–11839. https://doi.org/10.1128/jvi.00643-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dowd, K.A., Jost, C.A., Durbin, A.P., Whitehead, S.S., and Pierson, T.C., A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus, PLoS Pathog., 2011, vol. 7, no. 6, p. e1002111. https://doi.org/10.1371/journal.ppat.1002111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Beigel, J.H., Nordstrom, J.L., Pillemer, S.R., Roncal, C., Goldwater, D.R., Li, H., et al., Safety and pharmacokinetics of single intravenous dose of MGAWN1, a novel monoclonal antibody to West Nile virus, Antimicrob. Agents Chemother., 2010, vol. 54, no. 6, pp. 2431–2436. https://doi.org/10.1128/AAC.01178-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. The U.S. National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT00515385?term=antibody& cond=West+Nile+Virus&draw=2&rank=3. Accessed May 5, 2020.

  60. The U.S. National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT00927953?term=antibody &cond=West+Nile+Virus&draw=2&rank=9. Accessed May 5, 2020.

  61. Vogt, M.R., Moesker, B., Goudsmit, J., Jongeneelen, M., Austin, S.K., Oliphant, T., et al., Human monoclonal antibodies against West Nile virus induced by natural infection neutralize at a postattachment step, J. Virol., 2009, vol. 83, no. 13, pp. 6494–6507. https://doi.org/10.1128/JVI.00286-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Volk, D.E., Beasley, D.W.C., Kallick, D.A., Holbrook, M.R., Barrett, A.D.T., Gorenstein, D.G., et al., Solution structure and antibody binding studies of the envelope protein domain III from the New York strain of West Nile virus, J. Biol. Chem., 2004, vol. 279, no. 37, pp. 38755–38761. https://doi.org/10.1074/jbc.M402385200

    Article  CAS  PubMed  Google Scholar 

  63. Goo, L., Debbink, K., Kose, N., Sapparapu, G., Doyle, M.P., Wessel, A.W., et al., A potently neutralizing human monoclonal antibody targeting an epitope in the West Nile virus E protein preferentially recognizes mature virions, Nat. Microbiol., 2019, vol. 4, no. 1, pp. 71–77. https://doi.org/10.1038/s41564-018-0283-7

    Article  CAS  PubMed  Google Scholar 

  64. Sánchez, M.D., Pierson, T.C., McAllister, D., Hanna, S.L., Puffer, B.A., Valentine, L.E., et al., Characterization of neutralizing antibodies to West Nile virus, Virology, 2005, vol. 336, no. 1, pp. 70–82. https://doi.org/10.1016/j.virol.2005.02.020

    Article  CAS  PubMed  Google Scholar 

  65. Sun, E.C., Ma, J.N., Liu, N.H., Yang, T., Zhao, J., Geng, H.W., et al., Identification of two linear B-cell epitopes from West Nile virus NS1 by screening a phage-displayed random peptide library, BMC Microbiol., 2011, vol. 11, no. 1, p. 160. https://doi.org/10.1186/1471-2180-11-160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chung, K.M., Nybakken, G.E., Thompson, B.S., Engle, M.J., Marri, A., Fremont, D.H., et al., Antibodies against West Nile virus nonstructural protein NS1 prevent lethal infection through Fc γ receptor-dependent and -independent mechanisms, J. Virol., 2006, vol. 80, no. 3, pp. 1340–1351. https://doi.org/10.1128/jvi.80.3.1340-1351.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhao, H., Fernandez, E., Dowd, K.A., Speer, S.D., Platt, D.J., Gorman, M.J., et al., Structural basis of Zika virus-specific antibody protection, Cell, 2016, vol. 166, no. 4, pp. 1016–1027. https://doi.org/10.1016/J.CELL.2016.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, S., Hong, S., Deng, Y.Q., Ye, Q., Zhao, L.Z., Zhang, F.C., et al., Transfer of convalescent serum to pregnant mice prevents Zika virus infection and microcephaly in offspring, Cell Res., 2017, vol. 27, no. 1, pp. 158–160. https://doi.org/10.1038/cr.2016.144

    Article  PubMed  Google Scholar 

  69. Wang, Q., Yang, H., Liu, X., Dai, L., Ma, T., Qi, J., et al., Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus, Sci. Transl. Med., 2016, vol. 8, no. 369, p. 369ra179. https://doi.org/10.1126/scitranslmed.aai8336

    Article  CAS  PubMed  Google Scholar 

  70. Robbiani, D.F., Bozzacco, L., Keeffe, J.R., Khouri, R., Olsen, P.C., Gazumyan, A., et al., Recurrent potent human neutralizing antibodies to Zika virus in Brazil and Mexico, Cell, 2017, vol. 169, no. 4, pp. 597–609.e11. https://doi.org/10.1016/j.cell.2017.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, Y., Li, S., Du, L., Wang, C., Zou, P., Hong, B., et al., Neutralization of Zika virus by germline-like human monoclonal antibodies targeting cryptic epitopes on envelope domain III, Emerging Microbes Infect., 2017, vol. 6, no. 1, pp. 1–11. https://doi.org/10.1038/emi.2017.79

    Article  CAS  Google Scholar 

  72. Wang, J., Bardelli, M., Espinosa, D.A., Pedotti, M., Ng, T.S., Bianchi, S., et al., A human Bi-specific antibody against Zika virus with high therapeutic potential, Cell, 2017, vol. 171, no. 1, pp. 229–241.e15. https://doi.org/10.1016/j.cell.2017.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. The U.S. National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT03443830. Accessed May 5, 2020.

  74. Jiang, S. and Du, L., Advances in the research and development of therapeutic antibodies against the Zika virus, Cell. Mol. Immunol., 2019, vol. 16, no. 1, pp. 107–108. https://doi.org/10.1038/s41423-018-0043-x

    Article  CAS  Google Scholar 

  75. Bailey, M.J., Duehr, J., Dulin, H., Broecker, F., Brown, J.A., Arumemi, F.O., et al., Human antibodies targeting Zika virus NS1 provide protection against disease in a mouse model, Nat. Commun., 2018, vol. 9, no. 1, p. 4560. https://doi.org/10.1038/s41467-018-07008-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, X.Q., Chen, J., Huang, Y.F., Ding, X.X., Liu, L.D., Qiu, L.W., et al., Evaluation and analysis of dengue virus enhancing and neutralizing activities using simple high-throughput assays, Appl. Microbiol. Biotechnol., 2013, vol. 97, no. 14, pp. 6503–6511. https://doi.org/10.1007/s00253-013-5021-8

    Article  CAS  PubMed  Google Scholar 

  77. Oliphant, T., Engle, M., Nybakken, G.E., Doane, C., Johnson, S., Huang, L.S., et al., Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus, Nat. Med., 2005, vol. 11, no. 5, pp. 522–530. https://doi.org/10.1038/nm1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fernandez, E., Dejnirattisai, W., Cao, B., Scheaffer, S.M., Supasa, P., Wongwiwat, W., et al., Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection, Nat. Immunol., 2017, vol. 18, no. 11, pp. 1261–1269. https://doi.org/10.1038/ni.3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. The International Immunogenetics Information System. https://www.imgt.org/mAb-DB/mAbcard?AbId=436. Accessed May 5, 2020.

Download references

Funding

This work was supported by a state order to the Vector State Research Center of Virology and Biotechnology, Russian Federal State Agency for Health and Consumer Rights Surveillance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Nesmeianova.

Ethics declarations

The authors declare that they have no conflicts of interest. No experimentation involving animals or human beings was performed by any of the authors.

Additional information

Translated by E. Martynova

ADDITIONAL INFORMATION

Nesmeyanova V.S.: https://orcid.org/0000-0003-1091-3586; e-mail: nesmeyanova_vs@vector.nsc.ru

Shcherbakov D.N.: https://orcid.org/0000-0001-8023-4453; e-mail: dnshcherbakov@gmail.com

Kazachinskaya E.I.: https://orcid.org/0000-0002-1856-6147; e-mail: alenakaz@vector.nsc.ru

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesmeianova, V.S., Sherbakov, D.N. & Kazachinskaia, E.I. Using Flavivirus-Specific Monoclonal Antibodies to Study the Antigenic Structure of Flaviviruses and Develop Anti-Flavivirus Drugs. Mol. Genet. Microbiol. Virol. 36, 57–67 (2021). https://doi.org/10.3103/S0891416821020051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416821020051

Keywords:

Navigation