Skip to main content
Log in

Variability of the Genome of El Tor Cholera Vibrios Isolated before the Onset and in Different Periods of the Current Pandemic

  • EXPERIMENTAL PAPERS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

The genomic instability of the cholera agent leads to the emergence of its new variants with altered epidemically significant features. This makes investigation of the dynamics in pathogenicity gene structure and cholera vibro persistence changes over extended periods of time important. Bioinformatic analysis of whole genome nucleotide sequences was carried out in 44 toxigenic and nontoxigenic Vibrio cholerae O1 strains, biovar El Tor, isolated before the onset and in different periods of the current pandemic, with 29 of them being found in Russia. SNP-typing was performed using Bayesian evolutionary analysis with BEAST v2.5.1. Based on SNP-analysis, it was demonstrated that the importation of epidemically hazardous strains into the territory of Russia (1970–2014) overlapped with three different waves of the global spread of cholera. Comparison of the nucleotide sequences of genomic regions determining their virulence and ability to spread epidemically confirmed that there were multilayered rapid changes in cholera vibrios during evolution. For the first time ever, it has been established that the genomes of pathogenicity islands, VPI-1 and VPI-2, of prepandemic strains contained different mutations, which distinguish them from the genome of pandemic strains. At the same time, we have revealed conservation of nucleotide sequences of all the studied persistence genes from VPI-2 and EPI of pandemic isolates. On the contrary, the modern nontoxigenic strains ctxAtcpA show considerable variability of persistence genes that are parts of the structure of these mobile elements. New data on the structure of regions of the V. cholerae genome associated with persistence can be used to differentiate V. cholerae of different epidemic significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kaper, J.B., Morris, J.G., and Levine, M.M., Cholera, Clin. Microbiol. Rev., 1995, vol. 8, pp. 48–86. https://doi.org/10.1128/cmr.8.1.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mironova, L.V., Current conceptions concerning the objective laws of a cholera epidemic process: ecological and molecular biological aspects, Epidemiol. Infekts. Bolezn., 2018, vol. 23, no. 5, pp. 242–250.

    Article  Google Scholar 

  3. Tanamal, S.T., Notes on paracholera in Sulawesi (Celebes), Am. J. Trop. Med. Hyg., 1959, vol. 8, no. 1, pp. 72–78. https://doi.org/10.4269/ajtmh.1959.8.72

    Article  CAS  PubMed  Google Scholar 

  4. Mutreja, A., Kim, D.W., Thomson, N., Connor, T.R., Lee, J.H., Kariuki, S., et al., Evidence for several waves of global transmission within the seventh cholera pandemic, Nature, 2011, vol. 477, no. 7365, pp. 462–465. https://doi.org/10.1038/nature10392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramamurthy, T., Mutreja, A., Weill, F.X., Das, B., Ghosh, A., and Nair, G.B., Corrigendum: Revisiting the global epidemiology of cholera in conjunction with the genomics of Vibrio cholerae, Front. Public Health, 2019, vol. 7, p. 237. https://doi.org/10.3389/fpubh.2019.00237

    Article  PubMed  PubMed Central  Google Scholar 

  6. Heidelberg, J.F., Elsen, J.A., Nelson, W.C., Clayton, R.A., Gwinn, M.L., Dodson, R.J., et al., DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae, Nature, 2000, vol. 406, pp. 477–483. https://doi.org/10.1038/35020000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Waldor, M.K. and Mekalanos, J.J., Lysogenic conversion by a filamentous phage encoding cholera toxin, Science, 1996, vol. 272, no. 5270, pp. 1910–1914. https://doi.org/10.1126/science.272.5270.1910

    Article  CAS  PubMed  Google Scholar 

  8. Karaolis, D.K., Johnson, J.A., Bailey, C.C., Boedeker, E.C., Kaper, J.B., and Reeves, P.R., A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains, Proc. Natl. Acad. Sci. U. S. A., 1998, vol. 95, no. 6, pp. 3134–3139. https://doi.org/10.1073/pnas.95.6.3134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marsh, J.W. and Taylor, R.K., Genetic and transcriptional analyses of the Vibrio cholerae mannose-sensitive hemagglutinin type 4 pilus gene locus, J. Bacteriol., 1999, vol. 181, no. 4, pp. 1110–1117. https://doi.org/10.1128/jb.181.4.1110-1117.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jermyn, W.S. and Boyd, E.F., Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates, Microbiology, 2002, vol. 148, pp. 3681–3693. https://doi.org/10.1099/00221287-148-11-3681

    Article  CAS  PubMed  Google Scholar 

  11. Dziejman, M., Balon, E., Boyd, D., Fraser, C.M., Heidelberg, J.F., and Mekalanos, J.J., Comparative genomic analysis of Vibrio cholerae: Genes that correlate with cholera endemic and pandemic disease, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, no. 3, pp. 1556–1561. https://doi.org/10.3410/f.1004686.53905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smirnova, N.I., Zadnova, S.P., Agafonov, D.A., Shashkova, A.V., Cheldyshova, N.B., and Cherkasov, A.V., Comparative molecular-genetic analysis of mobile elements in natural strains of cholera agent, Russ. J. Genet., 2013, vol. 49, no. 9, pp. 898–908. https://doi.org/10.1134/S1022795413090081

    Article  CAS  Google Scholar 

  13. Nair, G.B., Faruque, S.M., Bhuiyan, N.A., Kamruzzaman, M., Siddique, A.K., and Sack, D.A., New variants of Vibrio cholerae O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh, J. Clin. Microbiol., 2002, vol. 40, no. 9, pp. 3296–3299. https://doi.org/10.1128/JCM.40.9.3296-3299.2002

    Article  PubMed  PubMed Central  Google Scholar 

  14. Son, M.S., Megli, C.J., Kovacikova, G., Qadri, F., and Taylor, R.K., Characterization of Vibrio cholerae O1 El Tor biotype variant clinical isolates from Bangladesh and Haiti, including a molecular genetic analysis of virulence genes, J. Clin. Microbiol., 2011, vol. 49, pp. 3739–3749. https://doi.org/10.1128/JCM.01286-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, E.J., Lee, C.H., Nair, G.B., and Kim, D.W., Whole-genome sequence comparisons reveal the evolution of Vibrio cholerae O1, Trends Microbiol., 2015, vol. 23, no. 8, pp. 479–489. https://doi.org/10.1016/j.tim.2015.03.010

    Article  CAS  PubMed  Google Scholar 

  16. Weill, F.X., Domman, D., Njamkepo, E., Almesbahi, A.A., Naji, M., Nasher, S.S., et al., Genomic insights into the 2016–2017 cholera epidemic in Yemen, Nature, 2019, vol. 565, no. 7738, pp. 230–233. https://doi.org/10.1038/s41586-018-0818-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taviani, E., Grim, C.J., Choi, J., Chun, J., Haley, B., Hasan, N.A., et al., Discovery of novel Vibrio cholerae VSP-II genomic islands using comparative genomic analysis, FEMS Microbiol. Lett., 2010, vol. 308, no. 2, pp. 130–137. https://doi.org/10.1111/j.1574-6968.2010.02008.x

    Article  CAS  PubMed  Google Scholar 

  18. Imamura, D., Morita, M., Sekizuka, T., Mizuno, T., Takemura, T., Yamashiro, T., et al., Comparative genome analysis of VSP-II and SNPs reveals heterogenic variation in contemporary strains of Vibrio cholerae O1 isolated from cholera patients in Kolkata, India, PLoS Neglected Trop. Dis., 2017, vol. 11, vol. 2, p. e0005386. https://doi.org/10.1371/journal.pntd.0005386

  19. Baddam, R., Sarker, N., Ahmed, D., Mazumder, R., Abdullah, A., Morshed, R., et al., Genome dynamics of Vibrio cholerae isolates linked to seasonal outbreaks of cholera in Dhaka, Bangladesh, mBio, 2020, vol. 11, no. 1, pii e03339-19. https://doi.org/10.1128/mBio.03339-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Titova, S.V., Moskvitina, E.A., Kruglikov, V.D., Samorodova, A.V., Tyuleneva, E.G., Monakhova, E.V., et al., Cholera: Analysis of epidemiological situation across the world and in Russia within a period of 2006–2015, Probl. Partic. Dangerous Infect., 2016, vol. 1, pp. 20–27. https://doi.org/10.21055/0370-1069-2016-1-20-27

    Article  Google Scholar 

  21. Smirnova, N.I., Agafonova, E.Yu., Shchelkanova, E.Yu., Agafonov, D.A., Krasnov, Ya.M., Livanova, L.F., and Kutyrev, V.V., Genomic diversity of non-toxigenic Vibrio cholerae O1 strains, isolated in the territory of Russia and neighboring states, Mol. Genet., Microbiol. Virol., 2018, vol. 33, no. 2, pp. 97–109. https://doi.org/10.3103/S089141681802012X

    Article  Google Scholar 

  22. Kuleshov, K.V., Markelov, M.L., Dedkov, V.G., Vodopianov, S.O., Vodop’ianov, A.S., Kermanov, A.V., Pisanov, R.V., et al., Phylogenetic analysis of genomes of Vibrio cholerae strains isolated on the territory of Rostov region, Zh. Mikrobiol., Epidemiol. Immunobiol., 2013, no. 6, pp. 13–20.

  23. Hu, D., Liu, B., Feng, L., Ding, P., Guo, X., Wang, M., et al., Origins of the current seventh cholera pandemic, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, no. 48, pp. 7730–7739. https://doi.org/10.1073/pnas.1608732113

    Article  CAS  Google Scholar 

  24. Osin, A.V., Nefedov, K.S., Yaroshenko, G.A., and Smirnova, N.I., Comparative genomic analysis of Vibrio cholerae El Tor preseventh and seventh pandemic strains isolated in various periods, Russ. J. Genet., 2005, vol. 41, no. 1, pp. 44–52. https://doi.org/10.1007/s11177-005-0007-y

    Article  CAS  Google Scholar 

  25. Taylor, G., Sialidases: structures, biological significance and therapeutic potential, Curr. Opin. Struct. Biol., 1996, vol. 6, no. 6, pp. 830–837. https://doi.org/10.1016/s0959-440x(96)80014-5

    Article  CAS  PubMed  Google Scholar 

  26. Almagro-Moreno, S. and Boyd, E.F., Sialic acid catabolism confers a competitive advantage to pathogenic Vibrio cholerae in the mouse intestine, Infect. Immun., 2009, vol. 77, no. 9, pp. 3807–3816. https://doi.org/10.1128/IAI.00279-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Watnick, P.I., Fullner, K.J., and Kolter, R., A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor, J. Bacteriol., 1999, vol. 181, no. 11, pp. 3606–3609. https://doi.org/10.1128/jb.181.11.3606-3609.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Smirnova.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. V. Makeeva

ADDITIONAL INFORMATION

Smirnova N.I.: https://orcid.org/0000-0002-7115-6286; e-mail: rusrapi@microbe.ru

Badanin D.V.: https://orcid.org/0000-0002-9662-8438; e-mail: rusrapi@microbe.ru

Rybal’chenko D.A.: https://orcid.org/0000-0002-3117-8229; e-mail: rusrapi@microbe.ru

Krasnov Ya.M.: https://orcid.org/0000-0002-4909-2394; e-mail: rusrapi@microbe.ru

Kritsky A.A.: https://orcid.org/0000-0002-5506-4285; e-mail: rusrapi@microbe.ru

Lozovsky Yu.V.: https://orcid.org/0000-0003-4382-7254; e-mail: rusrapi@microbe.ru

Fedorov A.V.: https://orcid.org/0000-0001-7190-4427; e-mail: rusrapi@microbe.ru

Kutyrev V.V.: https://orcid.org/0000-0003-3788-3452; e-mail: rusrapi@microbe.ru

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, N.I., Badanin, D.V., Rybal’chenko, D.A. et al. Variability of the Genome of El Tor Cholera Vibrios Isolated before the Onset and in Different Periods of the Current Pandemic. Mol. Genet. Microbiol. Virol. 36, 79–91 (2021). https://doi.org/10.3103/S0891416821020087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416821020087

Keywords:

Navigation