Skip to main content
Log in

Intragranular and Intergranular Crack Propagation in Nanocrystalline Ni Under Single-Cycle Mode I Loading

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Aim

As the first step to study the fatigue crack propagation, the molecular simulations were performed to investigate the opening, propagation and closure behaviors of intragranular and intergranular cracks in nanocrystalline Ni under single-cycle mode I loading. The atomic crack angle was proposed to characterize the crack-tip blunting and sharpening quantitatively. There are obvious different mechanisms between intragranular and intergranular crack propagation. Intragranular crack propagation could be induced by stacking faults and can change its direction very easily, but the intergranular crack perpendicular to the loading direction would propagate along the grain boundary and encounter strong resistance at the triple junction. New cracks could form in the grain boundaries ahead of the original crack. Different from the traditional understanding for intragranular and intergranular cracks, however, the dislocation density increases even in the unloading process and the crack tip is possibly sharpened temporarily during loading.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.F. Horstemeyer, D. Farkas, S. Kim, T. Tang, G. Potirniche, Int. J. Fatigue 32, 1473 (2010)

    Article  CAS  Google Scholar 

  2. L. Ma, S.F. Xiao, H.Q. Deng, W.Y. Hu, Int. J. Fatigue 68, 253 (2014)

    Article  CAS  Google Scholar 

  3. L. Ma, S.F. Xiao, H.Q. Deng, W.Y. Hu, Appl. Phys. A-Mater. Sci. Process. 118, 1399 (2015)

    Article  CAS  Google Scholar 

  4. G.H. Lee, J.H. Kim, H.G. Beom, Met. Mater.-Int. 27, 584–592 (2021)

    Article  CAS  Google Scholar 

  5. S.J. Zhou, P.S. Lomdahl, A.F. Voter, B.L. Holian, Eng. Fract. Mech. 61, 173 (1998)

    Article  Google Scholar 

  6. P.H. Sung, T.C. Chen, Comput. Mater. Sci. 102, 151 (2015)

    Article  CAS  Google Scholar 

  7. T. Zhou, X.H. Yang, C.Y. Chen, Int. J. Solids Struct. 46, 1975 (2009)

    Article  CAS  Google Scholar 

  8. T. Tang, S. Kim, J.B. Jordon, M.F. Horstemeyer, P.T. Wang, Comput. Mater. Sci. 50, 2977 (2011)

    Article  CAS  Google Scholar 

  9. G.P. Potirniche, M.F. Horstemeyer, B. Jelinek, G.J. Wagner, Int. J. Fatigue 27, 1179 (2005)

    Article  CAS  Google Scholar 

  10. G.P. Potirniche, M.F. Horstemeyer, Philos. Mag. Lett. 86, 185 (2006)

    Article  CAS  Google Scholar 

  11. A. Spielmannova, A. Machova, P. Hora, Mater. Sci. Forum 567–568, 61 (2008)

  12. W.P. Wu, Y.L. Li, X.Y. Sun, Comput. Mater. Sci. 109, 66 (2015)

    Article  CAS  Google Scholar 

  13. Y.Q. Zhang, S.Y. Jiang, X.M. Zhu, Y.A. Zhao, Results Phys. 7, 1722 (2017)

    Article  Google Scholar 

  14. Y.Q. Zhang, S.Y. Jiang, Metals 7, 432 (2017)

    Article  Google Scholar 

  15. K. Nishimura, N. Miyazaki, Comput. Mater. Sci. 31, 269 (2004)

    Article  CAS  Google Scholar 

  16. D. Farkas, M. Willemann, B. Hyde, Atomistic mechanisms of fatigue in nanocrystalline metals. Phys. Rev. Lett. 94, 165502 (2005)

    Article  Google Scholar 

  17. G.P. Potirniche, M.F. Horstemeyer, P.M. Gullett, B. Jelinek, Proc. R. Soc. A-Math. Phys. Eng. Sci. 462, 3707 (2006)

    Article  CAS  Google Scholar 

  18. W. Fang, H.X. Xie, F.X. Yin, J. Li, D.F. Khan, Q. Fang, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 666, 314 (2016)

    Article  CAS  Google Scholar 

  19. A. Luque, J. Aldazabal, J.M. Martinez-Esnaola, J.G. Sevillano, Fatigue Fract. Eng. Mater. Struct. 30, 1008 (2007)

    Article  CAS  Google Scholar 

  20. Y.Q. Zhang, S.Y. Jiang, X.M. Zhu, Y.N. Zhao, A molecular dynamics study of intercrystalline crack propagation in nano-nickel bicrystal films with (010) twist boundary. Eng. Fract. Mech. 168, 147–159 (2016)

    Article  Google Scholar 

  21. P. Wang, X.H. Yang, X.B. Tian, J. Mater. Res. 30, 709 (2015)

    Article  CAS  Google Scholar 

  22. R. Yasbolaghi, A.R. Khoei, Eng. Fract. Mech. 226, 106848 (2020)

    Article  Google Scholar 

  23. Y. Xiao, Y.M. Hu, Met. Mater. Int. 27, 2499 (2021)

  24. W.M. Jiang, H.X. Jiang, G.Y. Li, F. Guan, J.W. Zhu, Z.T. Fan, Met. Mater. Int. 27, 2977 (2021)

  25. D. Chen, Mater. Sci. Eng., A 190, 193 (1995)

    Article  Google Scholar 

  26. V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, H. Gleiter, Acta Mater. 49, 2713 (2001)

    Article  CAS  Google Scholar 

  27. H.F. Zhou, S.X. Qu, W. Yang, Model. Simul. Mater. Sc. 18, 065002 (2010)

    Google Scholar 

  28. H.F. Zhou, S.X. Qu, Nanotechnology 21, 035706 (2010)

    Article  Google Scholar 

  29. T. Shimokawa, M. Tsuboi, Acta Mater. 87, 233 (2015)

    Article  CAS  Google Scholar 

  30. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  CAS  Google Scholar 

  31. Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999)

    Article  CAS  Google Scholar 

  32. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  Google Scholar 

  33. D. Faken, H. Jónsson, Comput. Mater. Sci. 2, 279 (1994)

    Article  CAS  Google Scholar 

  34. A. Stukowski, V.V. Bulatov, A. Arsenlis, Model. Simul. Mater. Sci. Eng. 20, 085007 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant numbers: 11772137 and 11572135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Li, J. & Yang, X. Intragranular and Intergranular Crack Propagation in Nanocrystalline Ni Under Single-Cycle Mode I Loading. Met. Mater. Int. 28, 1590–1598 (2022). https://doi.org/10.1007/s12540-021-01037-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01037-z

Keywords

Navigation