Skip to main content
Log in

Microstructure and Properties of 2Cr13-xMo Stainless Steels Fabricated by Direct Laser Deposition

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this paper, 2Cr13 stainless steels with different Mo contents (x = 0 wt%, 0.5 wt%, 1.0 wt%, 1.5 wt%, 2.0 wt%) were fabricated by Direct Laser Deposition (DLD) technology. The effects of Mo element on the microstructure evolution and comprehensive properties such as corrosion resistance and wear resistance of 2Cr13 stainless steel were investigated in detail. The results showed that the microstructure for the DLD 2Cr13 stainless steel was mainly composed of martensite, ferrite, and a small amount of Mo2C and Cr23C6 carbides. With the content of Mo increased from 0.5 to 1.5 wt%, the martensitic microstructure was refined and more dispersed Mo2C and Cr23C6 carbides were formed. The average microhardness and corrosion resistance of the DLD 2Cr13-xMo were increased with the Mo content increased from 0 to 1.0 wt%, and then decreased when the Mo content exceeded 1.0 wt%. For the DLD 2Cr13-1.0 wt% Mo, the average microhardness reached up to 620 HV0.2, and the highest corrosion resistance (self-corrosion potential − 0.34 V) was obtained, in which the self-corrosion potential was 0.05 higher than that of DLD 2Cr13 stainless steel. The wear resistance of the DLD 2Cr13-xMo gradually increased with the increase of the Mo, the wear mass loss of DLD 2Cr13-xMo (x = 1.0 wt%) was only 37% that of DLD 2Cr13 stainless steel.

Graphic Abstract

Schematic diagram of DLD process and the microstructure, properties of 2Cr13 stainless steel with different Mo contents fabricated by DLD technology: (a)The DLD process diagram, (b)The changes of samples microstructure with different Mo contents. The fabrication process of 2Cr13 stainless steel with different Mo content by Direct Laser Deposition and the microstructure evolution process of samples with different Mo content are visually described in this graph. Fig. 1a illustrates in detail the DLD process design for sample preparation using FL-Dlight02-3000W semiconductor laser (maximum power 3000 W, spot size 4mm×4 mm). Fig. 1b shows that the microstructure in the DLD 2Cr13 stainless steel was mainly composed of martensite, ferrite, and a small amount carbides. Combined with the principle of DLD and the effect of Mo addition on microstructure, it is concluded that when Mo content is 1.0wt%, the martensite grain size is smaller, the lath is parallel and the growth direction is consistent, the content of ferrite and carbide is not much, which leads to the highest microhardness and the best corrosion resistance and wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.Z. Song, Z. Long, Mater. Chem. Phys. 28, 281 (1991)

    Article  CAS  Google Scholar 

  2. J. Yu, M. Rombouts, G. Maes, Mater. Design 45, 228 (2013)

    Article  CAS  Google Scholar 

  3. S. Tianmin, H. Meng, T.H. Yuen, Wear 255, 444 (2003)

    Article  CAS  Google Scholar 

  4. S.D. Sun, C. Barr, M. Brandt, J. Laser Appl. 30, 032502 (2018)

    Google Scholar 

  5. M.K. Alam, M. Mehdi, R.J. Urbanic, A. Edrisy, Mater. Charact. 161, 110138 (2020)

    Article  CAS  Google Scholar 

  6. A. Xue, L. Wang, X. Lin, J. Wang, J. Chen, W. Huang, J. Laser Appl. 32, 012007 (2020)

    Google Scholar 

  7. K.L. Wang, Q.B. Zhang, M.L. Sun, X.G. Wei, J. Mater. Process. Tech. 139, 448 (2003)

    Article  CAS  Google Scholar 

  8. U. de Oliveir, V. Ocelik, J.T.M. de Hosson, Surf. Coat. Tech. 197, 127 (2005)

    Article  CAS  Google Scholar 

  9. H. Wu, S. Chen, C. Zhang, J. Liang, C. Liu, M. Wang, Met. Mater. Int. 27, 40 (2021)

    Article  CAS  Google Scholar 

  10. N. Jeyaprakash, C.-H. Yang, K.R. Ramkumar, Met. Mater. Int. (2021). https://doi.org/10.1007/s12540-020-00933-0

    Article  Google Scholar 

  11. J. Song, Q. Deng, C. Chen, D. Hu, Y. Li, Appl. Surf. Sci. 252, 7934 (2006)

    Article  CAS  Google Scholar 

  12. G. Sun, R. Zhou, J. Lu, J. Mazumder, Acta Mater. 84, 172 (2015)

    Article  CAS  Google Scholar 

  13. X. Cui, S. Zhang, C. Wang, C.H. Zhang, J. Chen, J.B. Zhang, Mater. Sci. Eng. A 772, 138685 (2020)

    Article  Google Scholar 

  14. G.A. Ravi, X.J. Hao, N. Wain, X. Wu, M.M. Attallah, Mater. Design 47, 731 (2013)

    Article  CAS  Google Scholar 

  15. L. Zhu, J. Yao, Z. Zhou, Z. Chen, C. Lou, Infrared Laser Eng. 40, 853 (2011)

    Google Scholar 

  16. P. Krakhmalev, I. Yadroitsava, G. Fredriksson, I. Yadroitsev, Mater. Design 87, 380 (2015)

    Article  CAS  Google Scholar 

  17. C.T. Kwok, H.C. Man, F.T. Cheng, Surf. Coat. Tech. 126, 238 (2000)

    Article  CAS  Google Scholar 

  18. S. Chen, R. Wang, X. Chen, J. Liang, C. Liu, J. Laser Appl. 30, 032020 (2018)

    Google Scholar 

  19. S.Q. Wu, C.H. Zhang, S. Zhang, Q. Wang, Y. Liu, A.O. Abdullah, Mater. Res. Express 5, 036524 (2018)

    Google Scholar 

  20. D. Gupta, C.P. Paul, B.K. Gandhi, S.R. Gupta, A.K. Nath, J. Laser Appl. 20, 140 (2008)

    Article  CAS  Google Scholar 

  21. M. Guo, S. Chen, F. Shang, J. Liang, T. Cui, C. Liu, M. Wang, Met. Mater. Int. 27, 2706 (2021)

    Article  Google Scholar 

  22. S.D. Nath, E. Clinning, G. Gupta, V. Wuelfrath-Poirier, G. L’Espérance, O. Gulsoy, M. Kearns, S.V. Atre, Addit. Manuf. 28, 682 (2019)

    CAS  Google Scholar 

  23. H. Zhang, C.H. Zhang, Q. Wang, C.L. Wu, S. Zhang, J. Chen, A.O. Abdullah, Opt. Laser Technol. 101, 363 (2018)

    Article  CAS  Google Scholar 

  24. X. Lu, Q. Li, M. Guo, J. Zhu, K. Yang, Y. Shu, J. He, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00651-7 

    Article  Google Scholar 

  25. M. Song, X. Lin, G. Yang, X. Cui, H. Yang, W. Huang, J. Mater. Process. Tech. 214, 701 (2014)

    Article  CAS  Google Scholar 

  26. M. Ghayoor, K. Lee, Y. He, C. Chang, B.K. Paul, S. Pasebani, Addit. Manuf. 32, 101011 (2020)

    CAS  Google Scholar 

  27. N. Qi, X.H. Zhang, S. Chen, D. Chen, S. He, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00737-2

    Article  Google Scholar 

  28. J.I. Arrizubieta, A. Lamikiz, M. Cortina, E. Ukar, A. Alberdi, Int. J. Mach. Tool. Manu. 135, 53 (2018)

    Article  Google Scholar 

  29. K. Zhang, S. Wang, W. Liu, X. Shang, Mater. Design 55, 104 (2014)

    Article  CAS  Google Scholar 

  30. T. Guan, S. Chen, X. Chen, J. Liang, C. Liu, M. Wang, J. Mater. Process. Tech. 35, 395 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2016YFB1100203), Joint Founds of NSFC-Liaoning (U1508213), Founds of Green Manufacturing System Integration Project of the Industry and Information Ministry of China (2017), and Key R&D Projects in Liaoning Province (2020JH2/10100022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Lin, Z., Yin, X. et al. Microstructure and Properties of 2Cr13-xMo Stainless Steels Fabricated by Direct Laser Deposition. Met. Mater. Int. 28, 216–226 (2022). https://doi.org/10.1007/s12540-021-01035-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01035-1

Keywords

Navigation