Skip to main content
Log in

Gamma-aminobutyric acid (GABA) and salinity impacts antioxidative response and expression of stress-related genes in strawberry cv. Aromas

  • Biochemistry & Physiology - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Salinity is one of the most crucial abiotic stresses which is the consequence of increase in the concentration of NaCl ions influencing plant’s growth, development, and yield. Gamma-aminobutyric acid (GABA) is a non-protein amino acid involved in various metabolic processes that accumulates in many plant species during stress conditions. The present study was aimed to evaluate the effect of GABA (0 and 25 mM) and salinity (3 and 5 dS m−1) on physiological characteristics and expression pattern of some salinity-related genes in strawberry cv. Aromas under soilless culture condition at 12, 24, and 36 h after treatments’ initiation. Based on the results, salinity increased the content of H2O2, MDA, and proline, while it decreased the percentage of MSI and the activity of SOD and POD antioxidant enzymes. In contrast, the implementation of GABA not only decreased H2O2 and MDA content and maintained MSI percentage, but it also improved the activity of antioxidant enzymes and the transcription level of DREB, cAPX, MnSOD, and GST genes. Under non-stress conditions, GABA acted as a mild stressor by imposing effects similar to abiotic stress which could help plants adapt under the adverse environmental conditions. We concluded that strawberry plants had a better response to salinity by enhancing both enzymatic and non-enzymatic antioxidant physiological protection mechanisms and also by increasing the transcription of salinity-related genes upon GABA application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GST:

Glutathione S-transferases

MDA:

Malondialdehyde

MSI:

Membrane stability index

SOD:

Superoxide dismutase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

cAPX:

Cytosolic ascorbate peroxidase

References

  • Abogadallah GM (2010) Insights into the significance of antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adolf A, Liu L, Ackah M, Li Y, Du Q, Zheng D, Guo P, Shi Y, Lin Q, Qiu C, Zhao W (2021) Transcriptome profiling reveals candidate genes associated with cold stress in mulberry. Rev Bras Bot 44:125–137

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    Article  CAS  PubMed  Google Scholar 

  • Asano T, Hayashi N, Kikuchi S, Ohsugi R (2012) CDPK-mediated abiotic stress signaling. Plant Signal Behav 7:817–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attia H, Arnaud N, Karray N, Lachaâl M (2008) Long-term effects of mild salt stress on growth, ion accumulation and superoxide dismutase expression of Arabidopsis rosette leaves. Physiol Plant 132:293–305

    Article  CAS  PubMed  Google Scholar 

  • Auobi Amirabad S, Behtash F, Vafaee Y (2020) Selenium mitigates cadmium toxicity by preventing oxidative stress and enhancing photosynthesis and micronutrient availability on radish (Raphanus sativus L.) cv. Cherry Belle Environ Sci Pollut Res 27:12476–12490

    Article  CAS  Google Scholar 

  • Bayanati M, Tehranifar A, Razavi K, Nemati SH, Lohrasebi T, Ahmadi N (2019) Expression patterns analysis of SOD genes in responses to ethylene-induced oxidative stress in rose (Rosa hybrida) during flower development. S Afr J Bot 127:265–270

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christou A, Manganaris GA, Papadopoulos I, Fotopoulos V (2013a) Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J Exp Bot 64:1953–1966. https://doi.org/10.1093/jxb/ert055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csiszár J, Horváth E, Váry Z, Gallé Á, Bela K, Brunner S, Tari I (2014) Glutathione transferase supergene family in tomato: salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem 78:15–26

    Article  PubMed  CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhindsa RA, Plumb-Dhindsa P, Thorpe PA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dinler BS, Antoniou C, Fotopoulos V (2014) Interplay between GST and nitric oxide in the early response of soybean (Glycine max L.) plants to salinity stress. J Plant Physiol 171:1740–1747. https://doi.org/10.1016/j.jplph.2014.07.026

    Article  CAS  PubMed  Google Scholar 

  • El Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A (2020) How does proline treatment promote salt stress tolerance during crop plant development? Front Plant Sci. https://doi.org/10.3389/fpls.2020.01127

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahmideh L, Fooladvand Z (2018) Isolation and semi quantitative PCR of Na+/H+ antiporter (SOS1 and NHX) genes under salinity stress in Kochia scoparia. Biol Proced Online 20:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19

    Article  CAS  PubMed  Google Scholar 

  • FAO (2019) FAO statistical yearbook, World food and agriculture. Database http://www.http://faostat.fao.org/beta/en/#data/QC.

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58:2339–2358

    Article  CAS  PubMed  Google Scholar 

  • Franzoni G, Cocetta G, Trivellini A, Ferrante A (2019) Transcriptional regulation in rocket leaves as affected by salinity. Plants 9:20

    Article  PubMed Central  CAS  Google Scholar 

  • Gao Z, Xie W, Ashraf U, Li Y, Ma L, Gui R, Pan S, Tian H, Duan M, Wang S, Tang X, Mo Z (2020) Exogenous γ-aminobutyric acid (GABA) application at different growth stages regulates 2-acetyl-1-pyrroline, yield, quality and antioxidant attributes in fragrant rice. J Plant Interact 15:139–152. https://doi.org/10.1080/17429145.2020.1769210

    Article  CAS  Google Scholar 

  • Garg R, Narayana Chevala VVS, Shankar R, Jain M (2015) Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci Rep 5:14922. https://doi.org/10.1038/srep14922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garriga M, Muñoz CA, Caligari PDS, Retamales JB (2015) Effect of salt stress on genotypes of commercial (Fragaria x ananassa) and Chilean strawberry (F. chiloensis). Sci Hortic 195:37–47

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Anjum NA, Gill R, Yadav S, Hasanuzzaman M, Fujita M, Mishra P, Sabat SC, Tuteja N (2015) Superoxide dismutase—mentor of abiotic stress tolerance in crop plants. Environ Sci Pollut Res 22:10375–10394. https://doi.org/10.1007/s11356-015-4532-5

    Article  CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 701596:1–18

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hemeda HM, Klein BP (1990) Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci 55:184–185

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ Calif Agr Expt Stat 347:1–32

    Google Scholar 

  • Hu T, He S, Yang G, Zeng H, Wang G, Chen Z, Huang X (2011) Isolation and characterization of a rice glutathione S-transferase gene promoter regulated by herbicides and hormones. Plant Cell Rep 30:539–549

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Li H, Pang H, Fu J (2012) Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. J Plant Physiol 169:146–156. https://doi.org/10.1016/j.jplph.2011.08.020

    Article  CAS  PubMed  Google Scholar 

  • Igarashi D, Tsuchida H, Miyao M, Ohsumi C (2006) Glutamate: glyoxylate aminotransferase modulates amino acid content during photorespiration. Plant Physiol 142:901–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X (2010) Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett 32:1173–1179

    Article  CAS  PubMed  Google Scholar 

  • Ji J, Yue J, Xie T, Chen W, Du C, Chang E, Chen L, Jiang Z, Shi S (2018) Roles of gamma-aminobutyric acid on salinity-responsive genes at transcriptomic level in poplar: involving in abscisic acid and ethylene-signalling pathways. Planta 248:675–690

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Liu T, Xu J, Gao Z, Hu X (2019) Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis. BMC Plant Bio 19:1–15

    Google Scholar 

  • Kinnersley AM, Turano FJ (2010) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19:479–509

    Article  Google Scholar 

  • Kubala S, Wojtyla Ł, Quinet M, Lechowska K, Lutts S, Garnczarska M (2015) Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. J Plant Physiol 183:1–12

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748. https://doi.org/10.1093/jxb/err210

    Article  CAS  PubMed  Google Scholar 

  • Li W, Liu J, Ashraf U, Li G, Li Y, Lu W, Gao L, Han F, Hu J (2016) Exogenous gamma-aminobutyric Acid (GABA) application improved early growth, net photosynthesis, and associated physio-biochemical events in maize. Front Plant Sci 7:919

    PubMed  PubMed Central  Google Scholar 

  • Li Q, Zhao Y, Ding W, Han B, Geng S, Ning D, Ma T, Yu X (2021a) Gamma-aminobutyric acid facilitates the simultaneous production of biomass, astaxanthin and lipids in Haematococcus pluvialis under salinity and high-light stress conditions. Bioresour Technol 320:124418

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Tang M, Cheng B, Han L (2021b) Transcriptional regulation and stress-defensive key genes induced by gamma-aminobutyric acid in association with tolerance to water stress in creeping bentgrass. Plant Signal Behav 16:1858247. https://doi.org/10.1080/15592324.2020.1858247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19:998–1011. https://doi.org/10.1089/ars.2012.5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin K, Pu S (2010) Tissue-and genotype-specific ascorbate peroxidase expression in sweet potato in response to salt stress. Biol Plant 54:664–670

    Article  CAS  Google Scholar 

  • Liu T, Hu X, Zhang J, Zhang J, Du Q, Li J (2018) H2O2 mediates ALA-induced glutathione and ascorbate accumulation in the perception and resistance to oxidative stress in Solanum lycopersicum at low temperatures. BMC Plant Biol 18:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malekzadeh P, Khara J, Heydari R (2014) Alleviating effects of exogenous Gamma-aminobutiric acid on tomato seedling under chilling stress. Physiol Mol Biol Plants 20:133–137

    Article  CAS  PubMed  Google Scholar 

  • Mazzara M, James DJ (2000) The influence of photoperiodic growth condition on isolation of RNA from strawberry (Fragaria × ananassa Duch.) tissue. Mol Biotech 15:237–241

    Article  CAS  Google Scholar 

  • Mazzoni L, Di Vittori L, Balducci F, Forbes-Hernández TY, Giampieri F, Battino M, Mezzetti B, Capocasa F (2020) Sensorial and nutritional quality of inter and intra—Specific strawberry genotypes selected in resilient conditions. Sci Hortic 261:108945

    Article  CAS  Google Scholar 

  • Mirfattahi Z, Eshghi S (2020) Inducing salt tolerance in strawberry (Fragaria × ananassa Duch) plants by acetate application. J Plant Nut 43:1780–1793

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nayyar H, Kaur R, Kaur S, Singh R (2014) γ-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants. J Plant Growth Regul 33:408–419

    Article  CAS  Google Scholar 

  • Nemzer BV, Kalita D, Yashin AY, Yashin YI (2020) Bioactive compounds, antioxidant activities, and health beneficial effects of selected commercial berry fruits: a review. J Food Res. https://doi.org/10.5539/jfr.v9n5p78

    Article  Google Scholar 

  • Pandey GK, Zandkarimi H, Ebadi A, Salami SA, Alizade H, Baisakh N (2015) Analyzing the expression profile of AREB/ABF and DREB/CBF genes under drought and salinity stresses in grape (Vitis vinifera L.). Plos One 10

  • Parida AK, Das AB, Mittra B, Mohanty P (2004) Salt-stress induced alterations in protein profile and protease activity in the mangrove Bruguiera parviflora. Zeitschrift Für Naturforschung C 59:408–414

    Article  CAS  Google Scholar 

  • Rahimi A, Biglarifard A, Firozabadi M (2011) Influence of NaCl salinity on some physiological aspect of strawberry cv. Camarosa Russ Agric Sci 37:378–384

    Article  Google Scholar 

  • Ramesh SA, Tyerman SD, Gilliham M, Xu B (2017) gamma-Aminobutyric acid (GABA) signalling in plants. Cell Mol Life Sci 74(9):1577–1603

    Article  CAS  PubMed  Google Scholar 

  • Saidimoradi D, Ghaderi N, Javadi T (2019) Salinity stress mitigation by humic acid application in strawberry (Fragaria x ananassa Duch). Sci Hortic. https://doi.org/10.1016/j.scienta.2019.10859456

    Article  Google Scholar 

  • Saied AS, Keutgen AJ, Noga G (2005) The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs ‘Elsanta’ and ‘Korona.’ Sci Hortic 103(3):289–303

    Article  CAS  Google Scholar 

  • Sairam RK (1994) Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian J Exp Biol 32(32):594–597

    Google Scholar 

  • Sandhu D, Pudussery MV, Ferreira JFS, Liu X, Pallete A, Grover KK, Hummer K (2019) Variable salinity responses and comparative gene expression in woodland strawberry genotypes. Sci Hortic 254:61–69

    Article  CAS  Google Scholar 

  • Sheteiwy MS, Shao H, Qi W, Hamoud YA, Shaghaleh H, Khan NU, Yang R, Tang B (2019) GABA-alleviated oxidative injury induced by salinity, osmotic stress and their combination by regulating cellular and molecular signals in rice. Int J Mol Sci 20:22

    Article  CAS  Google Scholar 

  • Shi SQ, Shi Z, Jiang ZP, Qi LW, Sun XM, Li CX, Liu JF, Xiao WF, Zhang SG (2010) Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production. Plant Cell Environ 33:149–162

    Article  CAS  PubMed  Google Scholar 

  • Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  PubMed  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009) Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ Exp Botany 65:270–281

    Article  CAS  Google Scholar 

  • Tanveer M, Ahmed HAI (2020) ROS signalling in modulating salinity stress tolerance in plants. In: Hasanuzzaman M, Tanveer M (eds) Salt and drought stress tolerance in plants. Springer, pp 299–314

    Chapter  Google Scholar 

  • Tanveer M, Shaukat R, Ali M, Pirdad F (2020) An overview of salinity tolerance mechanism in plants. In: Salt and Drought Stress Tolerance in Plants. Springer, pp 1–16

  • Vijayakumari K, Puthur JT (2016) γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress. Plant Growth Regul 78:57–67. https://doi.org/10.1007/s10725-015-0074-6

    Article  CAS  Google Scholar 

  • Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics 6:143–156. https://doi.org/10.1007/s10142-005-0013-0

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Dong H, Hou P, Zhou H, He L, Wang C (2019) Effects of exogenous gamma-aminobutyric acid on absorption and regulation of ion in wheat under salinity stress. In: Li D, Zhao C (eds) Computer and computing technologies in agriculture XI IFIP advances in information and communication technology. Springer, pp 347–357

    Google Scholar 

  • Wu X, Jia Q, Ji S, Gong B, Li J, Lu G, Gao H (2020) Gamma-aminobutyric acid (GABA) alleviates salt damage in tomato by modulating Na(+) uptake, the GAD gene, amino acid synthesis and reactive oxygen species metabolism. BMC Plant Biol 20:465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaghubi K, Ghaderi N, Vafaee Y, Javadi T (2016) Potassium silicate alleviates deleterious effects of salinity on two strawberry cultivars grown under soilless pot culture. Sci Hortic 213:87–95

    Article  CAS  Google Scholar 

  • Yaghubi K, Vafaee Y, Ghaderi N, Javadi T (2019) Potassium silicate improves salinity resistant and affects fruit quality in two strawberry cultivars grown under salt stress. Comm Soil Sci Plant Anal 50:1439–1451

    Article  CAS  Google Scholar 

  • Yang G, Wang Y, Xia D, Gao C, Wang C, Yang C (2014) Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell Tiss Organ Cult (PCTOC) 117:99–112

    Article  CAS  Google Scholar 

  • Zahedi SM, Abdelrahman M, Hosseini MS, Hoveizeh NF, Tran LP (2019) Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environ Pollut 253:246–258. https://doi.org/10.1016/j.envpol.2019.04.078

    Article  CAS  PubMed  Google Scholar 

  • Zahedi SM, Hosseini MS, Abadia J, Marjani M (2020) Melatonin foliar sprays elicit salinity stress tolerance and enhance fruit yield and quality in strawberry (Fragaria x ananassa Duch.). Plant Physiol Biochem 149:313–323

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li Z, Peng Y, Wang X, Peng D, Li Y, He X, Zhang X, Ma X, Huang L, Yan Y (2015) Clones of FeSOD, MDHAR, DHAR genes from white clover and gene expression analysis of ROS-scavenging enzymes during abiotic stress and hormone treatments. Molecules 20:20939–20954. https://doi.org/10.3390/molecules201119741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yang Q, Zhang C, Wei L, Yue R, Li G, Lin X, Wang R (2019) A CkDREB1 gene isolated from Caragana korshinskii Kom. enhances arabidopsis drought and cold tolerance. Rev Bras Bot 42:97–105

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Vice-Chancellor of Academic Affairs, University of Kurdistan, for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. YV and FN participated in the experiment design and coordination and guaranteed of integrity of the entire study. SG carried out the experiment. YV and NG performed the statistical analysis. YV, FN, and NG were involved in drafting the manuscript, evaluating the statistical analysis, and critical revising the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yavar Vafaee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3683 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golnari, S., Vafaee, Y., Nazari, F. et al. Gamma-aminobutyric acid (GABA) and salinity impacts antioxidative response and expression of stress-related genes in strawberry cv. Aromas. Braz. J. Bot 44, 639–651 (2021). https://doi.org/10.1007/s40415-021-00750-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-021-00750-8

Keywords

Navigation