Skip to main content
Log in

Formation Features of Electric Conductive Networks in the ABS/MCNT Composite when Manufacturing Filament for FDM-Printing

  • SELF-ASSEMBLED STRUCTURES AND NANOASSEMBLIES
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

In this paper, we study the physicomechanical and electrophysical properties of filaments of a nanocomposite made of a copolymer of acrylonitrile with butadiene and styrene (ABS)/multi-walled carbon nanotubes (MCNTs) for FDM-printing (Fusing Deposition Modeling). Both native (TMN) and functionalized (TMF) multiwalled carbon nanotubes were used as fillers. The strength of the filament is shown to depend nonlinearly on the MCNT concentration. The strength initially decreases by 24–34%, and then, as the concentration increases, at 5 wt % of filler increases to values that are 3–5% less than that of unmodified ABS. The filament resistivity reaches 1.1 × 103 and 7.2 × 104 Ω m for TMN and TMF, respectively (the filler concentration is 5 wt %). The power-law dependence of the resistivity on the nanofiller concentration was found to be violated, which is possibly related to segregation of phases with different conductivity in the nanocomposite. The maximum value of the resistivity occurs at a concentration of 2.5 wt % ТМН when the phase with higher conductivity does not yet form a single network, but represents “islands” separated from each other by areas with lower conductivity. Violations of the power-law dependence disappear in the case of saturation of the filament with TMN with water or using TMF as a nanofiller. Changes in the morphology and microstructure of the filament surface were studied by electron microscopy. An increase in the MCNT concentration is shown to lead to a “smoothing” of the surface and may be associated with a deeper relaxation of the shrinkage stresses compressing the filament. The effect manifests itself at minimal TMN concentrations. When using TMP, “smoothing” of the surface is observed at a maximum concentration of 5 wt %. It is shown that the physicomechanical and electrically conductive properties of filaments are determined by the processes of separation of the phases with different conductivity and shrinkage that occur simultaneously during filament production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. E. N. Kablov, Met. Evraz., No. 3, 2 (2017).

  2. E. N. Kablov, Intell. Tekhnol., No. 2 (14), 16 (2016).

  3. E. N. Kablov, Aviats. Mater. Tekhnol., No. 1 (34), 3 (2015). https://doi.org/10.18577/2071-9140-2015-0-1-3-33

  4. E. N. Kablov, Collection of Scientific Information Materials, 3rd ed. (VIAM, Moscow, 2015) [in Russian].

    Google Scholar 

  5. A. E. Sorokin, M. M. Platonov, and S. A. Larionov, Tr. VIAM, Elektron. Nauch.-Tekh. Zh., No. 9, 35 (2017). https://doi.org/10.18577/2307-6046-2017-0-9-5-5

  6. B. S. Kirin, S. L. Lonskii, G. N. Petrova, and A. E. Sorokin, Tr. VIAM, Elektron. Nauch.-Tekh. Zh., No. 4 (76), 7 (2019). https://doi.org/10.18577/2307-6046-2019-0-4-21-29

  7. S. V. Kondrashov, A. A. Pykhtin, S. A. Larionov, and A. E. Sorokin, Tr. VIAM, Elektron. Nauch.-Tekh. Zh., No. 10 (82), 04 (2019). https://doi.org/10.18577/2307-6046-2019-0-10-34-49

  8. L. M. Bollig, P. J. Hilpisch, G. S. Mowry, and B. B. Nelson-Cheeseman, J. Magn. Magn. Mater. 442, 97 (2017). https://doi.org/10.1016/j.jmmm.2017.06.070

    Article  CAS  Google Scholar 

  9. B. Khatri, K. Lappe, D. Noetzel, et al., Materials 11, 189 (2018). https://doi.org/10.3390/ma11020189

    Article  CAS  Google Scholar 

  10. S. J. Leigh, C. P. Purssell, D. R. Billson, and D. Hutchins, Smart Mater. Struct. 23, 095039 (2014).

    Article  CAS  Google Scholar 

  11. E. M. Palmero, J. Rial, J. de Vicente, et al., Sci. Technol. Adv. Mater. 19, 465 (2018). https://doi.org/10.1080/14686996.2018.1471321

    Article  CAS  Google Scholar 

  12. C. Huber, C. Abert, F. Bruckner, et al., Sci. Rep. 8, 1 (2017). https://doi.org/10.1038/s41598-017-09864-0

    Article  CAS  Google Scholar 

  13. Y. Jia, H. He, Y. Geng, et al., Compos. Sci. Technol. 145, 55 (2017). https://doi.org/10.1016/j.compscitech.2017.03.035

    Article  CAS  Google Scholar 

  14. S. Waheed, J. M. Cabot, P. Smejkal, et al., ACS Appl. Mater. Interfaces 11, 4353 (2019). https://doi.org/10.1021/acsami.8b18232

    Article  CAS  Google Scholar 

  15. T. J. Quill, M. K. Smith, T. Zhou, et al., Appl. Compos. Mater. 25, 1205 (2018). https://doi.org/10.1007/s10443-017-9661-1

    Article  CAS  Google Scholar 

  16. M. A. Cruz, S. Ye, M. J. Kim, et al., Part. Part. Syst. Char. 35, 1700385 (2018). https://doi.org/10.1002/ppsc.201700385

    Article  CAS  Google Scholar 

  17. Z. Lei, Z. Chen, H. Peng, et al., J. Mater. Sci. 53, 14495 (2018). https://doi.org/10.1007/s10853-018-2645-1

    Article  CAS  Google Scholar 

  18. H. K. Sezer and O. Eren, J. Manuf. Process. 37, 339 (2019). https://doi.org/10.1016/j.jmapro.2018.12.004

    Article  Google Scholar 

  19. L. Yang, S. Li, X. Zhou, et al., Synth. Met. 253, 122 (2019). https://doi.org/10.1016/j.synthmet.2019.05.008

    Article  CAS  Google Scholar 

  20. W. W. Yu, J. Zhang, J. R. Wu, et al., J. Appl. Polym. Sci. 134, 44703 (2017). https://doi.org/10.1002/app.44703

    Article  CAS  Google Scholar 

  21. G. Spinelli, P. Lamberti, V. Tucci, et al., Composites, Part B 167, 467 (2019). https://doi.org/10.1016/j.compositesb.2019.03.021

    Article  CAS  Google Scholar 

  22. K. Gnanasekaran, T. Heijmans, S. van Bennekom, et al., Appl. Mater. Today 9, 21 (2017). https://doi.org/10.1016/j.apmt.2017.04.003

    Article  Google Scholar 

  23. W. Ye, W. Wu, X. Hu, et al., Compos. Sci. Technol. 182, 107671 (2019). https://doi.org/10.1016/j.compscitech.2019.05.028

    Article  CAS  Google Scholar 

  24. S. Agarwala, G. L. Goh, G. D. Goh, et al., in 3D and 4D Printing of Polymer Nanocomposite Materials (Elsevier, Amsterdam, 2020), p. 297. https://doi.org/10.1016/B978-0-12-816805-9.00010-7

  25. A. Joshi, J. K. Goh, and K. E. J. Goh, in 3D and 4D Printing of Polymer Nanocomposite Materials (Elsevier, Amsterdam, 2020), p. 45. https://doi.org/10.1016/B978-0-12-816805-9.00003-X

  26. M. R. Khosravani and T. Reinicke, Sens. Actuators, A, 111916 (2020). https://doi.org/10.1016/j.sna.2020.111916

  27. I. Alig, P. Pötschke, D. Lellinger, et al., Polymer 53, 4 (2012). https://doi.org/10.1016/j.polymer.2011.10.063

    Article  CAS  Google Scholar 

  28. T. Villmow, S. Pegel, P. Pötschke, and U. Wagenknecht, Compos. Sci. Technol. 68, 777 (2008). https://doi.org/10.1016/j.compscitech.2007.08.031

    Article  CAS  Google Scholar 

  29. F. H. Gojny, M. H. G. Wichmann, B. Fiedler, et al., Polymer 47, 2036 (2006). https://doi.org/10.1016/j.polymer.2006.01.029

    Article  CAS  Google Scholar 

  30. I. Alig, D. Lellinger, and T. Skipa, Polymer–Carbon Nanotube Composites Preparation, Properties, and Applications (Woodhead, Cambridge, 2011), p. 295. https://doi.org/10.1533/9780857091390.2.295

  31. J. Tiusanen, D. Vlasveeld, and J. Vuorinen, Compos. Sci. Technol. 72, 1741 (2012). https://doi.org/10.1016/j.compscitech.2012.07.009

    Article  CAS  Google Scholar 

  32. The Chemist’s Handbook 21. https://www.chem21.info/info/981228/.

  33. P. Bonnet, D. Sireude, B. Garnier, and O. Chauvet, Appl. Phys. Lett. 91, 201910 (2007). https://doi.org/10.1063/1.2813625

    Article  CAS  Google Scholar 

  34. I. D. Simonov-Emel’yanov, A. A. Pykhtin, S. A. Smotrova, and A. N. Kovaleva, Polym. Sci. D 10, 236 (2017). https://doi.org/10.1134/S1995421217030169

    Article  Google Scholar 

  35. I. D. Simonov-Emel’yanov, A. A. Pykhtin, and K. A. Mikhal’chenko, Nanotechnol. Russ. 13, 372 (2018). https://doi.org/10.1134/S1995078018040146

    Article  Google Scholar 

  36. I. A. Mansurova et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 62 (11), 106 (2019).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 18-03-00371a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kondrashov.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, A.E., Pykhtin, A.A., Larionov, S.A. et al. Formation Features of Electric Conductive Networks in the ABS/MCNT Composite when Manufacturing Filament for FDM-Printing. Nanotechnol Russia 16, 473–479 (2021). https://doi.org/10.1134/S2635167621040133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621040133

Navigation