Skip to main content
Log in

The Possibilities of Modification of Particles Based on Lactide/Glycolide Copolymers by the Layer-by-Layer Adsorption of Polyelectrolytes for Designing the Tools for Targeted Drug Delivery

  • REVIEWS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

This review discusses the possibilities of the method of layer-by-layer adsorption of polyelectrolytes on colloidal particles used to design the tools for drug delivery and the studies of recent years on designing the carriers based on the particles of lactide/glycolide copolymers and a polyelectrolyte capsule for targeted drug delivery. The examples of inclusion of functional substances in the core or multilayer coating of carriers, as well as formation of complex systems containing different target agents in the core and the coating, are presented. The effects of the composition of polyelectrolyte coating on the properties of resultant particles were considered. The prospects of modification of lactide/glycolide copolymer particles by the layer-by-layer adsorption of polyelectrolytes for the development of new tools for targeted drug delivery were demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. “On the strategy of scientific and technological development of the Russian Federation,” Decree No. 642 of the President of the Russian Federation dated 01.12.2016. http://www.kremlin.ru/acts/bank/41449.

  2. F. Dilnawaz, S. Acharya, and S. K. Sahoo, Int. J. Pharm. 538, 263 (2018). https://doi.org/10.1016/j.ijpharm.2018.01.016

    Article  CAS  Google Scholar 

  3. O. M. Kutova, E. L. Guryev, E. A. Sokolova, et al., Cancers 11, 68 (2019). https://doi.org/10.3390/cancers11010068

    Article  CAS  Google Scholar 

  4. S. Aftab, A. Shah, A. Nadhman, et al., Int. J. Pharm. 540, 132 (2018). https://doi.org/10.1016/j.ijpharm.2018.02.007

    Article  CAS  Google Scholar 

  5. S. S. Kim, M. Sun Park, O. Jeon, et al., Biomaterials 27, 1399 (2006). https://doi.org/10.1016/j.biomaterials.2005.08.016

    Article  CAS  Google Scholar 

  6. J. M. Karp, M. S. Shoichet, and J. E. Davies, J. Biomed. Mater. Res. A 64, 388 (2003). https://doi.org/10.1002/jbm.a.10420

    Article  CAS  Google Scholar 

  7. J. M. Lü, X. Wang, C. Marin-Muller, et al., Expert Rev. Mol. Diagn. 9, 325 (2009). https://doi.org/10.1586/erm.09.15

    Article  Google Scholar 

  8. F. Danhier, E. Ansorena, J. M. Silva, et al., J. Control. Release 161, 505 (2012). https://doi.org/10.1016/j.jconrel.2012.01.043

    Article  CAS  Google Scholar 

  9. K. Ariga, J. P. Hill, and Q. Ji, Phys. Chem. Chem. Phys. 9, 2319 (2007).

    Article  CAS  Google Scholar 

  10. S. A. Sukhishvili, Curr. Opin. Colloid Interface Sci. 10, 37 (2005). https://doi.org/10.1016/j.cocis.2005.05.001

    Article  CAS  Google Scholar 

  11. E. M. Saurer, S. M. Jewel, D. A. Roenneburg, et al., Biomacromolecules 14, 1696 (2013). https://doi.org/10.1021/bm4005222

    Article  CAS  Google Scholar 

  12. A. Shukla, J. C. Fang, S. Puranam, and P. T. Hammond, J. Control. Release 157, 64 (2012). https://doi.org/10.1016/j.jconrel.2011.09.062

    Article  CAS  Google Scholar 

  13. P. C. Lee, B. S. Zan, L. T. Chen, and T. W. Chung, Int. J. Nanomed. 14, 1533 (2019). https://doi.org/10.2147/IJN.S174962

    Article  CAS  Google Scholar 

  14. M. F. Bédard, B. G. de Geest, A. G. Skirtach, et al., Adv. Colloid Interface Sci. 158, 2 (2010). https://doi.org/10.1016/j.cis.2009.07.007

    Article  CAS  Google Scholar 

  15. A. S. Timin, H. Gao, D. V. Voronin, et al., Adv. Mater. Interfaces 4, 1600338 (2017). https://doi.org/10.1002/admi.201600338

    Article  CAS  Google Scholar 

  16. D. P. Go, J. A. Palmer, G. M. Mitchell, et al., J. Biomed. Mater. Res. A 103, 1849 (2015). https://doi.org/10.1002/jbm.a.35319

    Article  CAS  Google Scholar 

  17. B. J. Zhang, Z. W. Han, K. Duan, et al., J. Biomed. Mater. Res. A 106, 95 (2018). https://doi.org/10.1002/jbm.a.36210

    Article  CAS  Google Scholar 

  18. Q. Zuo, R. Guo, A. Hona, et al., Biomed. Mater. 10, 35008 (2015).

    Article  Google Scholar 

  19. R. Domínguez-Ríos, D. R. Sanchez-Ramirez, K. Ruiz-Saray, et al., Colloids Surf., B 178, 199 (2019). https://doi.org/10.1016/j.colsurfb.2019.03.011

    Article  CAS  Google Scholar 

  20. W. Ou, L. Jiang, R. K. Thapa, et al., Theranostics 8, 4574 (2018). https://doi.org/10.7150/thno.26758

    Article  CAS  Google Scholar 

  21. F. Chai, L. Sun, X. He, et al., Int. J. Nanomed. 12, 1791 (2017). https://doi.org/10.2147/IJN.S130404

    Article  CAS  Google Scholar 

  22. Y. W. Yang and P. Y. J. Hsu, Biomaterials 29, 2516 (2008). https://doi.org/10.1016/j.biomaterials.2008.02.015

    Article  CAS  Google Scholar 

  23. R. Meng, K. Li, Z. Chen, and C. Shi, J. Huazhong Univ. Sci. Technol. Med. Sci. 36, 14 (2016).

    CAS  Google Scholar 

  24. F. Wang, J. Yuan, Q. Zhang, et al., J. Biomater. Sci. Polym. Ed. 29, 1566 (2018). https://doi.org/10.1080/09205063.2018.1475941

    Article  CAS  Google Scholar 

  25. J. S. Park, K. Park, D. G. Woo, et al., Biomacromolecules 9, 2162 (2008). https://doi.org/10.1021/bm800251x

    Article  CAS  Google Scholar 

  26. K. Na, S. Kim, K. Park, et al., J. Am. Chem. Soc. 129, 5788 (2007). https://doi.org/10.1021/ja067707r

    Article  CAS  Google Scholar 

  27. M. F. Loya-Castro, M. Sanchez-Mejia, D. R. Sanchez-Ramirez, et al., J. Colloid Interface Sci. 518, 122 (2018). https://doi.org/10.1016/j.jcis.2018.02.013

    Article  CAS  Google Scholar 

  28. H. Wang, B. Du, M. Li, et al., Mater. Lett. 237, 109 (2019). https://doi.org/10.1016/j.matlet.2018.11.082

    Article  CAS  Google Scholar 

  29. S. Sieber, S. Siegrist, S. Schwarz, et al., Macromol. Biosci. 17 (8), 110 (2017). https://doi.org/10.1002/mabi.201700015

    Article  CAS  Google Scholar 

  30. J. Fan, Y. Liu, S. Wang, et al., RSC Adv. 7, 32786 (2017). https://doi.org/10.1039/C7RA04908K

    Article  CAS  Google Scholar 

  31. J. Z. Wu, G. R. Williams, H. Y. Li, et al., Drug Deliv. 24, 1513 (2017). https://doi.org/10.1080/10717544.2017.1381200

    Article  CAS  Google Scholar 

  32. J. Zhou, G. Romero, E. Rojas, et al., Macromol. Chem. Phys. 211, 404 (2010). https://doi.org/10.1002/macp.200900514

    Article  CAS  Google Scholar 

  33. J. Zhou, G. Romero, E. Rojas, et al., J. Colloid Interface Sci. 345, 241 (2010). https://doi.org/10.1016/j.jcis.2010.02.004

    Article  CAS  Google Scholar 

  34. F. Danhier, E. Ansorena, J. M. Silva, et al., J. Control. Release 161, 505 (2012). https://doi.org/10.1016/j.jconrel.2012.01.043

    Article  CAS  Google Scholar 

  35. T. G. Park, Biomaterials 16, 1123 (1995). https://doi.org/10.1016/0142-9612(95)93575-X

    Article  CAS  Google Scholar 

  36. Z. Zhang, X. Bi, H. Li, and G. Huang, Drug Deliv. 18, 536 (2011). https://doi.org/10.3109/10717544.2011.596584

    Article  CAS  Google Scholar 

  37. M. Guter and M. Breunig, Methods Mol. Biol. 1943, 153 (2019).

    Article  CAS  Google Scholar 

  38. Q. Zhao, Zh. X. Fang, M. M. Chen, et al., Micro Nano Lett. 13, 835 (2018).

    Article  CAS  Google Scholar 

  39. C. H. Kapadia, S. A. Ioele, and E. S. Day, J. Biomed. Mater. Res. A 108, 601 (2020). https://doi.org/10.1002/jbm.a.36840

    Article  CAS  Google Scholar 

  40. J. Kong, B. Wei, T. Groth, et al., J. Biomed. Mater. Res. A 106, 2714 (2018). https://doi.org/10.1002/jbm.a.36487

    Article  CAS  Google Scholar 

  41. D. Cai, J. Fan, S. Wang, et al., R. Soc. Open Sci. 5, 180320 (2018). https://doi.org/10.1098/rsos.180320

    Article  CAS  Google Scholar 

  42. E. Donath, G. B. Sukhorukov, F. Caruso, et al., Angew. Chem. Int. Ed. 37, 2201 (1998). https://doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2201::AID-ANIE2201>3.0.CO;2-E

    Article  Google Scholar 

  43. T. V. Bukreeva and L. A. Feigin, Priroda, No. 12, 78 (2013).

  44. R. Akasov, T. Borodina, E. Zaytseva, et al., ACS Appl. Mater. Interfaces 7, 16581 (2015). https://doi.org/10.1021/acsami.5b04141

    Article  CAS  Google Scholar 

  45. E. P. Mironov, T. N. Borodina, and T. V. Bukreeva, Colloid J. 79, 508 (2017). https://doi.org/10.1134/S1061933X17040093

    Article  CAS  Google Scholar 

  46. E. P. Mironov, T. N. Borodina, D. G. Yurina, et al., Colloids Surf., B 184, 110464 (2019). https://doi.org/10.1016/j.colsurfb.2019.110464

    Article  CAS  Google Scholar 

  47. M. Marquez, S. Nilsson, L. Lennartsson, et al., Anticancer Res. 24, 1347 (2004).

    CAS  Google Scholar 

  48. I. L. Ang, T. C. W. Poon, P. B. S. Lai, et al., J. Proteome Res. 5, 2691 (2006). https://doi.org/10.1021/pr060109r

    Article  CAS  Google Scholar 

  49. H. Tian, L. Lin, Z. Jiao, et al., J. Control. Release 172, 410 (2013). https://doi.org/10.1016/j.jconrel.2013.06.026

    Article  CAS  Google Scholar 

  50. E. P. Mironov, I. V. Marchenko, V. V. Artemov, and T. V. Bukreeva, Colloid J. 79, 360 (2017). https://doi.org/10.1134/S1061933X17030103

    Article  CAS  Google Scholar 

  51. T. V. Bukreeva, B. V. Parakhonsky, A. G. Skirtach, A. S. Susha, and G. B. Sukhorukov, Crystallogr. Rep. 51, 863 (2006). https://doi.org/10.1134/S1063774506050178

    Article  CAS  Google Scholar 

  52. B. V. Parakhonsky, M. Bedard, T. V. Bukreeva, et al., J. Phys. Chem. C 114, 1996 (2010). https://doi.org/10.1021/jp904564v

    Article  CAS  Google Scholar 

  53. D. B. Trushina, A. S. Burova, T. N. Borodina, M. A. Soldatov, T. Yu. Klochko, and T. V. Bukreeva, Colloid J. 80, 710 (2018). https://doi.org/10.1134/S1061933X18060182

    Article  CAS  Google Scholar 

  54. K. V. Palamarchuk, M. A. Vantsyan, R. A. Kamyshinsky, et al., Int. J. Nanotechnol. 16, 510 (2019). https://doi.org/10.1504/IJNT.2019.106622

    Article  CAS  Google Scholar 

  55. I. S. Lyubutin, S. S. Starchikov, T. V. Bukreeva, et al., Mater. Sci. Eng. C 45, 225 (2014). https://doi.org/10.1016/j.msec.2014.09.017

    Article  CAS  Google Scholar 

  56. T. V. Bukreeva, O. A. Orlova, S. N. Sulyanov, Yu. V. Grigoriev, and P. V. Dorovatovskiy, Crystallogr. Rep. 56, 880 (2011). https://doi.org/10.1134/S1063774511050051

    Article  CAS  Google Scholar 

  57. T. Borodina, D. Yurina, A. Sokovikov, et al., Polymer 212, 123299 (2021). https://doi.org/10.1016/j.polymer.2020.123299

    Article  CAS  Google Scholar 

  58. I. V. Marchenko, G. S. Plotnikov, A. N. Baranov, A. M. Saletsky, and T. V. Bukreeva, Colloid J. 78, 181 (2016). https://doi.org/10.1134/S1061933X16020083

    Article  CAS  Google Scholar 

  59. S. S. Rumyantseva and T. V. Bukreeva, Colloid J. 81, 446 (2019). https://doi.org/10.1134/S1061933X19040148

    Article  CAS  Google Scholar 

  60. T. Borodina, I. Marchenko, D. Trushina, et al., J. Pharm. Pharmacol. 70, 1164 (2018). https://doi.org/10.1111/jphp.12958

    Article  CAS  Google Scholar 

  61. B. G. de Geest, R. E. Venbroucke, A. M. Guenther, et al., Adv. Mater. 18, 1005 (2006). https://doi.org/10.1002/adma.200502128

    Article  CAS  Google Scholar 

  62. Y. Itoh, M. Matsusaki, T. Kida, and M. Akashi, Biomacromolecules 7, 2715 (2006). https://doi.org/10.1021/bm060289y

    Article  CAS  Google Scholar 

  63. T. Borodina, E. Markvicheva, S. Kunizhev, et al., Macromol. Rapid Commun. 28, 1894 (2007). https://doi.org/10.1002/marc.200700409

    Article  CAS  Google Scholar 

  64. S. de Koker, B. G. de Geest, C. Cuvelier, et al., Adv. Funct. Mater. 17, 3754 (2007). https://doi.org/10.1002/adfm.200700416

    Article  CAS  Google Scholar 

  65. I. Marchenko, A. Yashchenok, T. Borodina, et al., J. Control. Release 162, 599 (2012). https://doi.org/10.1016/j.jconrel.2012.08.006

    Article  CAS  Google Scholar 

  66. F. Atashrazm, R. M. Lowenthal, G. M. Woods, et al., Mar. Drugs 13, 2327 (2015). https://doi.org/10.3390/md13042327

    Article  CAS  Google Scholar 

  67. H. Zhao and L. Y. L. Yung, Int. J. Pharm. 349, 256 (2008). https://doi.org/10.1016/j.ijpharm.2007.07.040

    Article  CAS  Google Scholar 

  68. T. Takigawa and Y. Endo, J. Occup. Health 48, 75 (2006). https://doi.org/10.1539/joh.48.75

    Article  CAS  Google Scholar 

  69. B. Manickam, R. Sreedharan, and M. Elumalai, Curr. Drug Deliv. 11, 139 (2014).

    Article  CAS  Google Scholar 

  70. B. Du, H. Wang, H. Tang, et al., Mater. Lett. 187, 106 (2017). https://doi.org/10.1016/j.matlet.2016.08.155

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Kurchatov Institute National Research Center, order no. 1058 of July 2, 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Bukreeva.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukreeva, T.V., Marchenko, I.V. & Timaeva, O.I. The Possibilities of Modification of Particles Based on Lactide/Glycolide Copolymers by the Layer-by-Layer Adsorption of Polyelectrolytes for Designing the Tools for Targeted Drug Delivery. Nanotechnol Russia 16, 439–449 (2021). https://doi.org/10.1134/S2635167621040029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621040029

Navigation