Skip to main content
Log in

The Effects of Humic Substances and Humic Substance-Based Silver Nanocomposites on the Viability of Rhizospheric Microorganisms

  • NANOBIOLOGY AND GENETICS, OMICS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The influence of humic substances (HSs) of coals (HS-cl), shale (HS-sl), and mud (HS-md) isolated in Mongolia and silver nanocomposites (NCs) synthesized on their basis on the viability of Rhodococcus erythropolis (gram positive bacteria) and Pseudomonas oryzihabitans (gram negative bacteria) is investigated using methods for measuring the optical density of a bacterial suspension, diffusion into agar, as well as studying the intensity of biofilm formation. It is shown that the effects of HSs and NCs on bacteria in dynamics are different in R. erythropolis and P. oryzihabitans. HS-sl stimulated the growth of R. erythropolis on the first day of observation, and in P. oryzihabitans this effect was noted later, at 2 days of the experiment. Despite the absence of bacteriostatic effects for HSs, a decrease in biofilm formation of bacteria under their influence has been revealed. HS-cl and HS-md reduced the biofilm formation of R. erythropolis, and HS-sl reduced P. oryzihabitans. The addition of HSs to HCs retains the bactericidal effect of NC HS-cl/Ag and NC HS-md/Ag with respect to R. erythropolis. A decrease in biofilm formation of gram-negative bacteria P. oryzihabitans occurred under the influence of NC HS-md/Ag. NC HS-cl/Ag, in contrast, enhanced the reproduction of P. oryzihabitans throughout the observation period. Thus, the reaction of microorganisms to the effects of HSs in the composition of NCs depends on the morphology of the bacteria themselves, as well as on the chemical structure and functional composition of the active substances. The obtained data and previously published results on the positive effect of silver NCs and HSs on plants open the prospects for further investigation of the effects of using NCs of HSs when introduced into the soil in combination with rhizospheric bacteria to increase the resistance of cultivated plants to stress factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. I. Gorovaya, D. S. Orlov, and O. V. Shcherbenko, Humic Substances (Naukova Dumka, Kiev, 1995) [in Russian].

    Google Scholar 

  2. A. I. Popov, V. N. Zelenkov, and T. V. Teplyakova, Vestn. RAEN 16 (5), 9 (2016).

    Google Scholar 

  3. Z. H. Shah, H. M. Rehman, T. Akhtar, et al., Front. Plant Sci. 9, 263 (2018). https://doi.org/10.3389/fpls.2018.00263

    Article  Google Scholar 

  4. I. A. Popov, Humic Substances: Properties, Structure, Formation (SPbGU, St. Petersburg, 2004) [in Russian].

  5. I. A. Savchenko, I. N. Korneeva, E. A. Luksha, et al., Zh. MediAl’, No. 1, 54 (2019). https://doi.org/10.21145/2225-0026-2019-1-54-60

  6. O. S. Bezuglova, E. A. Polienko, and A. V. Govortsov, Izv. Orenb. Agrar. Univ., No. 4 (60), 11 (2016).

  7. V. N. Pishchik, L. V. Boitsova, and N. I. Vorob’ev, Agrokhimiya, No. 3, 85 (2019).

  8. D. Bulgarelli, K. Schlaeppi, S. Spaepen, et al., Ann. Rev. Plant Biol. 64, 807 (2013). https://doi.org/10.1146/annurev-arplant-050312-120106

    Article  CAS  Google Scholar 

  9. N. V. Feoktistova, A. M. Mardanova, G. F. Khadieva, et al., Uch. Zap. Kazan. Univ., Ser.: Estestv. Nauki, No. 2, 207 (2016).

    Google Scholar 

  10. A. A. Stepanov, P. S. Shulga, D. D. Gosse, and M. E. Smirnova, Mosc. Univ. Soil Sci. Bull. 73, 71 (2018).

    Article  Google Scholar 

  11. T. A. Kirdei, Izv. Vyssh. Uchebn. Zaved., Prikl. Khim. Biotekhnol. 7 (4), 102 (2017). https://doi.org/10.21285/2227-2925-2017-7-4-110-115

    Article  Google Scholar 

  12. H. Leventoglu and I. Erdal, J. Plant Nutr. 37, 2074 (2014). https://doi.org/10.1080/01904167.2014.920373

    Article  CAS  Google Scholar 

  13. A. P. Romanova, V. V. Titova, and A. M. Makaeva, Zhivotnov. Kormoproizv. 101, 327 (2018).

    Google Scholar 

  14. S. G. Zhemchuzhin, Yu. Ya. Spiridonov, I. Yu. Kleimenova, et al., Agrokhimiya, No. 5, 89 (2019). https://doi.org/10.1134/S0002188119050120

  15. A. I. Perfileva, I. A. Graskova, O. A. Nozhkina, N. S. Zabanova, B. G. Sukhov, N. N. Shkil, and E. V. Nefyodova, Nanotechnol. Russ. 14, 489 (2019). https://doi.org/10.1134/S1995078019050112

    Article  Google Scholar 

  16. M. C. Camara, E. V. R. Campos, R. A. Monteiro, et al., J. Nanobiotechnol. 17, 100 (2019). https://doi.org/10.1186/s12951-019-0533-8

    Article  Google Scholar 

  17. S. Kumar, M. Nehra, N. Dilbaghi, et al., J. Control. Release 294, 131 (2019). https://doi.org/10.1016/j.jconrel.2018.12.012

    Article  CAS  Google Scholar 

  18. X. He, H. Deng, and H. M. Hwang, J. Food Drug. Anal. 27 (1), 1 (2019). https://doi.org/10.1016/j.jfda.2018.12.002

    Article  CAS  Google Scholar 

  19. M. A. Fedotov, G. E. Folmanis, P. K. Gifer, et al., in Proceedings of the 7th All-Russia Conference on Nanomaterials (Moscow, 2020), p. 281.

  20. K. Sampathkumar, K. X. Tan, and S. C. J. Loo, Science (Washington, DC, U. S.) 23, 101055 (2020). https://doi.org/10.1016/j.isci.2020.101055

    Article  CAS  Google Scholar 

  21. I. A. Graskova, A. I. Perfilieva, O. A. Nozhkina, et al., Dokl. Biochem. Biophys. 483, 321 (2018). https://doi.org/10.31857/S086956520003459-7

    Article  Google Scholar 

  22. G. Dolmaa, G. P. Aleksrova, M. V. Lesnichaya, et al., Mongol. J. Chem. 14, 51 (2013). https://doi.org/10.5564/mjc.v14i0.199

    Article  Google Scholar 

  23. G. P. Aleksandrova, M. V. Lesnichaya, G. Dolmaa, I. V. Klimenkov, B. G. Sukhov, D. Regdel, and B. A. Trofimov, Russ. Chem. Bull. 66, 143 (2017).

    Article  CAS  Google Scholar 

  24. M. S. Tret’yakova, “Prospects for the use of endo- and rhizospheric microorganisms for the restoration of oil-contaminated soils,” Extended Abstract of Cand. Sci. (Biol.) Dissertation (Irkutsk, 2018).

  25. F. Silva, Rev. Chilena Infectol. 32, 445 (2015). https://doi.org/10.4067/S0716-10182015000500011

    Article  Google Scholar 

  26. O. Sagdic, A. Aksoy, and G. Ozkan, Acta Aliment. 35, 487 (2006). https://doi.org/10.1556/aalim.35.2006.4.12

    Article  Google Scholar 

  27. I. A. Shaginyan, G. V. Alekseeva, M. Yu. Chernukha, et al., Zh. Mikrobiol. Epidemiol. Immunobiol., No. 1, 3 (2007).

  28. G. P. Aleksrova, M. V. Lesnichaya, G. Dolmaa, et al., Geogr. Prirod. Resursy, No. 6, 70 (2016). https://doi.org/10.21782/GIPR0206-1619-2016-6(70-75)

  29. G. Dolmaa and G. P. Aleksandrova, Biological Activity of Humic Substances and Their Nanocomposites (LAP Lambert, Saarbrücken, 2017) [in Russian].

    Google Scholar 

  30. A. I. Perfileva, O. A. Nozhkina, I. A. Graskova, A. V. Sidorov, M. V. Lesnichaya, G. P. Aleksandrova, G. Dolmaa, I. V. Klimenkov, and B. G. Sukhov, Russ. Chem. Bull. 67, 157 (2018). https://doi.org/10.1007/s11172-018-2052-4

    Article  CAS  Google Scholar 

  31. I. A. Zaikina, Epiphytic Microflora of Healthy Plants (RIO PGSKhA, Penza, 2007), Part 2, p. 40 [in Russian].

  32. I. B. Borozdina, Vestn. VGU, Ser.: Khim. Biol. Farm., No. 2, 67 (2010).

  33. A. Fatahi and S. Sadeghi, Lett. Appl. Microbiol. 64, 370 (2017). https://doi.org/10.1111/lam.12729

    Article  CAS  Google Scholar 

  34. Y. Cheng, H. Zang, H. Wang, et al., Ecotoxicol. Environ. Saf. 157, 111 (2018). https://doi.org/10.1016/j.ecoenv.2018.03.074

    Article  CAS  Google Scholar 

  35. M. S. Tret’yakova, L. A. Belovezhets, Yu. A. Markova, et al., Agrokhimiya, No. 12, 46 (2017). https://doi.org/10.7868/S0002188117120079

  36. A. N. Nozhevnikova, E. A. Botchkova, and V. K. Plaku-nov, Microbiology 84, 731 (2015). https://doi.org/10.1134/s0026261715060107

    Article  CAS  Google Scholar 

  37. K. Velmourougane, R. Prasanna, and A. K. Saxena, J. Basic Microbiol. 57, 548 (2017). https://doi.org/10.1002/jobm.201700046

    Article  Google Scholar 

  38. W. Yin, Y. Wang, L. Liu, et al., Int. J. Mol. Sci. 20, 3423 (2019). https://doi.org/10.3390/ijms20143423

    Article  CAS  Google Scholar 

  39. V. V. Tikhonov, A. V. Yakushev, Yu. A. Zavgorodnyaya, et al., Pochvovedenie, No. 3, 333 (2010). https://doi.org/10.1134/S1064229310030087

  40. F. D. Lipsa, E. Ulea, E. C. Morari, et al., Lucr. Sti. Ser. Agron. 55, 253 (2012).

    Google Scholar 

  41. M. A. Kanis’kin, A. A. Izosimov, V. A. Terekhova, et al., Teor. Prikl. Ekol., No. 1, 87 (2011).

  42. V. N. Pishchik, N. I. Vorobyov, O. S. Walsh, et al., Plant Nutr. 39, 1074 (2016). https://doi.org/10.1080/01904167.2015.1061551

    Article  CAS  Google Scholar 

  43. V. T. Emtsev and E. N. Mishustin, Fundamentals of Microbiology (Yurait, Moscow, 2019) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out using the collections of the Center for Collective Use Bioresource Center of the Siberian Institute of Plant Physiology and Biochemistry, SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Perfileva.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perfileva, A.I., Nozhkina, O.A., Aleksandrova, G.P. et al. The Effects of Humic Substances and Humic Substance-Based Silver Nanocomposites on the Viability of Rhizospheric Microorganisms. Nanotechnol Russia 16, 525–531 (2021). https://doi.org/10.1134/S263516762104008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S263516762104008X

Navigation