Skip to main content
Log in

The Survival of the Infusoria Paramecium caudatum in the Presence of Aluminum Oxide Nanoparticles

  • NANOBIOLOGY AND GENETICS, OMICS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Acute toxicity of nanoparticles of aluminum oxide (Al2O3) with a size of 13–16 nm was investigated by the biotesting method using Paramecium caudatum ciliates in the concentration range of 10–100 μg/mL. Aluminum oxide has an acute toxic effect on paramecium at concentrations of 20–100 μg/mL. The mean lethal dose (LD50) is equal to the concentration of nanoparticles at which the mortality of ciliates in relation to the control reached 50%. The LD50 for Al2O3 nanoparticles is 23 μg/mL at a 24-h exposure. According to published data, the toxic effect of Al2O3 nanoparticles is specific and depends on the size and surface charge of the particles and on the interfacial interaction of nanoparticles with the cell surface, as well as on the concentration and exposure time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. Chatterjee, Environ. Sci. Technol. 2, 339 (2008). https://doi.org/10.1021/eS0870909

    Article  Google Scholar 

  2. J. Gangwar, B. K. Gupta, and A. K. Srivastava, Defense Sci. J. 66, 323 (2016). https://doi.org/10.14429/dsj.66.10206

    Article  CAS  Google Scholar 

  3. A. Yu. Godymchuk, G. G. Savel’ev, and A. P. Zykova, Ecology of Nanomaterials, The School-Book (BINOM, Labor. Znanii, Moscow, 2012) [in Russian].

    Google Scholar 

  4. O. A. Zeinalov, S. P. Kombarova, D. V. Bagrov, et al., Obz. Klin. Farmakol. Lek. Ter. 14 (3), 24 (2016). https://doi.org/10.17816/RCF14324-33

    Article  Google Scholar 

  5. N. Roussel, L. Lallemant, J. Y. Chane-Ching, et al., J. Am. Ceram. Soc. 96, 1039 (2013). https://doi.org/10.1111/jace.12255

    Article  CAS  Google Scholar 

  6. V. V. Ivanov, A. S. Kaigorodov, V. R. Khrustov, et al., Ross. Nanotekhnol. 1 (1–2), 201 (2006).

    Google Scholar 

  7. A. A. Shumakova, O. N. Tananova, E. A. Arianova, et al., Vopr. Pitan. 81 (6), 54 (2012).

    CAS  Google Scholar 

  8. H. Ma, P. L. Williams, and S. A. Diamond, Environ. Pollut. 172, 76 (2013). https://doi.org/10.1016/j.envpol.2012.08.011

    Article  CAS  Google Scholar 

  9. Yu. N. Morgalev, I. A. Gosteva, T. G. Morgaleva, S. Yu. Morgalev, E. V. Kostenko, and B. A. Kudryav-tsev, Nanotechnol. Russ. 13, 311 (2018).

    Article  CAS  Google Scholar 

  10. E. J. Parka, G. H. Leeb, C. Yoonc, et al., J. Appl. Toxicol. 36, 424 (2016). doi org/https://doi.org/10.1002/jat.3233

  11. A. L. di Virgilio, M. Reigosa, and M. F. de Mele, J. Biomed. Mater. Res. A 92, 80 (2010). https://doi.org/10.1002/jbm.a.32339

    Article  CAS  Google Scholar 

  12. E. Radziun, J. Dudkiewicz-Wilczynska, I. Ksiaek, et al., Toxicol. Vitro 25, 1694 (2011).

    Article  CAS  Google Scholar 

  13. Z. M. Song, H. Tang, X. Deng, et al., J. Nanosci. Nanotechnol. 17, 2881 (2017). https://doi.org/10.1166/jnn.2017.13056

    Article  CAS  Google Scholar 

  14. E. Dong, Y. Wang, S. T. Yang, et al., J. Nanosci. Nanotechnol. 11, 7848 (2011). https://doi.org/10.1166/jnn.2011.4748

    Article  CAS  Google Scholar 

  15. I. V. Shugalei, A. V. Garabadzhiu, M. A. Ilyushin, and A. M. Sudarikov, Ekol. Khim. 21, 172 (2012).

    CAS  Google Scholar 

  16. A. S. Cardwell, W. J. Adams, R. W. Gensemer, et al., Environ. Toxicol. Chem. 37, 36 (2018). https://doi.org/10.1002/etc.3901

    Article  CAS  Google Scholar 

  17. S. Pakrashi, S. Dalai, A. Humayun, et al., PLOS One 8 (9), e74003 (2013). https://doi.org/10.1371/journal.pone.0074003

    Article  CAS  Google Scholar 

  18. N. Musee, P. J. Oberholster, L. Sikhwivhilu, and A. M. Botha, Chemosphere 81, 1196 (2010). https://doi.org/10.1016/j.chemosphere.2010.09.040

    Article  CAS  Google Scholar 

  19. P. V. Vidya and K. C. Chitra, Int. J. Fisher. Aquat. Stud. 3, 13 (2018).

    Google Scholar 

  20. J. G. Coleman, D. R. Johnson, J. K. Stanley, et al., Environ. Toxicol. Chem. 29, 1575 (2010). https://doi.org/10.1002/etc.196

    Article  CAS  Google Scholar 

  21. T. Stadler, M. Buteler, D. K. Weaver, and S. Sofie, J. Stored Prod. Res. 48, 81 (2012). https://doi.org/10.1016/j.jspr.2011.09.004

    Article  Google Scholar 

  22. GOST (State Standard) No. 31674-2012: Feed, compound feed, compound feed raw materials. Methods for determining general toxicity (2012; 2016).

  23. M. Kryuchkova, A. Danilushkina, Y. Lvov, and R. Fakhrullin, Environ. Sci.: Nano 3, 442 (2016). https://doi.org/10.1039/c5en00201j

    Article  CAS  Google Scholar 

  24. G. I. Fakhrullina, F. S. Akhatova, Y. M. Lvov, and R. F. Fakhrullin, Environ. Sci.: Nano 2, 54 (2015). https://doi.org/10.1039/C4EN00135D

    Article  CAS  Google Scholar 

  25. K. Li, Y. Chen, W. Zhang, et al., Chem. Res. Toxicol. 25, 1675 (2012). https://doi.org/10.1021/tx300151y

    Article  CAS  Google Scholar 

  26. I. Gosteva, Yu. Morgalev, T. Morgaleva, and S. Morgalev, IOP Conf. Ser.: Mater. Sci. Eng. 98, 012007 (2015). https://doi.org/10.1088/1757-899X/98/1/012007

  27. M. A. Gatoo, S. Naseem, M. Y. Arfat, et al., BioMed Res. Int. 8, 498420 (2014). https://doi.org/10.1155/2014/498420

    Article  CAS  Google Scholar 

  28. N. V. Zaitseva, M. A. Zemlyanova, M. S. Stepankov, and A. M. Ignatova, Ekol. Cheloveka, No. 5, 9 (2018). https://doi.org/10.33396/1728-0869-2018-5-9-15

Download references

Funding

This work was supported by a subsidy allocated to the Kazan Federal University for the implementation of state assignment no. 0671-2020-0058 in the field of scientific activity. The work was carried out within the framework of the program for increasing the competitiveness of the Kazan Federal University at the expense of the grant of the President of the Russian Federation (MD-2153.2020.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kryuchkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryuchkova, M.A., Akhatova, F.S. & Fakhrullin, R.F. The Survival of the Infusoria Paramecium caudatum in the Presence of Aluminum Oxide Nanoparticles. Nanotechnol Russia 16, 532–536 (2021). https://doi.org/10.1134/S2635167621040042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621040042

Navigation