Skip to main content
Log in

Correlation between the Stretching Vibrations of Aliphatic Groups and the Structural and Geochemical Properties of Crude Oils of the Same Genetic Type Using the Case of the Turija-Sever Oil Field, Pannonian Basin, Serbia

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The paper describes an investigation of structural and geochemical properties of genetically similar crude oils from the Turija-sever field located in the South-Eastern Pannonian Basin, Serbia. Samples from 56 wells were examined by infrared spectroscopy (IR) and gas chromatography (GC). The IR spectral region of 2800– 3000 cm–1 was modeled by the sum of Lorentzian functions to reveal the contributions of aliphatic stretching vibrations, from which the alkane branching factor was evaluated. Being dependent on the aliphatic chain branching, the CH2 absorption peaks shifted by 3–4 cm–1 towards high frequencies when passing from the least-branched to the most-branched oil samples. This is associated with an increase in the fraction of gauche-conformations in polymethylene fragments. GC data shows the similarity of Turija-sever oils in thermal maturity, corresponding to to the early stage of liquid hydrocarbon generation and revealing a mixed aquatic-terrigenous origin of the precursor organic matter (OM) generated in a transitional reducing to weakly oxidizing depositional environment. In view of a significant correlation revealed between the alkane branching and the geochemistry, the samples were readily divided into two groups. Specifically, oils of Group I have a higher contribution of algae to the precursor OM and were generated under more reducing conditions than oils of Group II. The obtained data demonstrates in practice the advantage of the GC-IR combination to explain the structural and geochemical properties of sedimentary OM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Medeiros, P.M. and Simoneit, B.R.T., J. Sep. Sci., 2007, vol. 30, no. 10, pp. 1516–1536. https://doi.org/10.1002/jssc.200600399

    Article  CAS  PubMed  Google Scholar 

  2. Arapova, O.V., Chistyakov, A.V., Palankoev, T.A., Bondarenko, G.N., and Tsodikov, M.V., Petrol. Chem., 2020, vol. 60, no. 9, pp. 1019–1025. https://doi.org/10.1134/S0965544120090029

    Article  CAS  Google Scholar 

  3. Oliveira, C.R., Ferreira, A.A., Oliveira, C.J.F., Azevedo, D.A., Santos Neto, E.V., and Neto, F.R.A., Org. Geochem., 2012, vol. 46, pp. 154–164. https://doi.org/10.1016/j.orggeochem.2012.03.002

    Article  CAS  Google Scholar 

  4. Bastow, T.P., van Aarssen, B., and Lang, D., Org. Geochem., 2007, vol. 38, no. 8, pp. 1235–1250. https://doi.org/10.1016/j.orggeochem.2007.03.004

    Article  CAS  Google Scholar 

  5. Smith, B.C., Infrared Spectral Interpretation. A Systematic Approach, CRC Press, 1998.

  6. Tissot, B., Deroo, G., and Hood, A., Geochim. Cosmochim. Acta, 1978, vol. 42, no. 10, pp. 1469–1485. https://doi.org/10.1016/0016-7037(78)90018-2

    Article  CAS  Google Scholar 

  7. Solomon, P.R. and Miknis, F.P., Fuel, 1980, vol. 59, no. 12, pp. 893–896. https://doi.org/10.1016/0016-2361(80)90040-X

    Article  CAS  Google Scholar 

  8. Snyder, R.W., Painter, P.C., and Cronauer, D.C., Fuel, 1983, vol. 62, no. 10, pp. 1205–1214. https://doi.org/10.1016/0016-2361(83)90065-0

    Article  CAS  Google Scholar 

  9. Glebovskaya, E.A., Primenenie infrakrasnoi spektrometrii v neftyanoi geokhimii (Application of Iinfrared Spectrometry in Petroleum Geochemistry), Leningrad: Nedra, 1971.

  10. Schenk, H.J., Witte, E.G., Müller, P.J., and Schwochau, K., Org. Geochem., 1986, vol. 10, nos. 4–6, pp. 1099–1104. https://doi.org/10.1016/S0146-6380(86)80050-X

    Article  CAS  Google Scholar 

  11. Ganz, H. and Kalkreuth, W., Fuel, 1987, vol. 66, no. 5, pp. 708–711. https://doi.org/10.1016/0016-2361(87)90285-7

    Article  CAS  Google Scholar 

  12. Kister, J., Guiliano, M., Largeau, C., Derenne, S., and Casadevall, E., Fuel, 1990, vol. 69, no. 11, pp. 1356–1361. https://doi.org/10.1016/0016-2361(90)90115-7

    Article  CAS  Google Scholar 

  13. Ganz, H. and Kalkreuth, W., Southeast Asian Earth Sci., 1991, vol. 5, nos. 1–4, pp. 19–28. https://doi.org/10.1016/0743-9547(91)90007-K

    Article  Google Scholar 

  14. Ballice, L., Yüksel, M., Saglam, M., Schulz, H., and Hanoglu, C., Fuel, 1995, vol. 74, no. 11, pp. 1618–1623. https://doi.org/10.1016/0016-2361(95)00093-K

    Article  CAS  Google Scholar 

  15. Dutta, S., Hartkopf-Fröder, C., Witte, K., Brocke, R., and Mann, U., Int. J. Coal Geol., 2013, vol. 115, pp. 13–23. https://doi.org/10.1016/j.coal.2013.04.003

    Article  CAS  Google Scholar 

  16. Permanyer, A., Douifi, L., Lahcini, A., Lamontagne, J., and Kister, J., Fuel, 2002, vol. 81, no. 7, pp. 861–866. https://doi.org/10.1016/S0016-2361(01)00211-3

    Article  CAS  Google Scholar 

  17. Permanyer, A., Azevedo, D.A., Rebufa, C., Kister, J., and Gonçalves, F.T.T., Geogaceta, 2005, vol. 38, pp. 139–141.

    Google Scholar 

  18. Abbas, Q., Dupuy, N., Rebufa, C., Vrielynck, L., Kister, J., and Permanyer, Appl. Spectrosc., 2006, vol. 60, no. 3, pp. 304–314. https://doi.org/10.1366/000370206776342508

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, J., Cao, J., Xiang, B., Zhou, N., Ma, W., and Li, E., Energy Fuels, 2019, vol. 33, no. 11, pp. 10704–10717. https://doi.org/10.1021/acs.energyfuels.9b02586

    Article  CAS  Google Scholar 

  20. Strel’nikova, E.B., Serebrennikova, O.V., and Ryabova, N.V., Petrol. Chem., 2008, vol. 48, pp. 420–427. https://doi.org/10.1134/S0965544108060030

    Article  Google Scholar 

  21. Abdrafikova, I.M., Kayukova, G.P., Petrov, S.M., Ramazanova, A.I., Musin, R.Z., and Morozov, V.I., Petrol. Chem., 2015, vol. 55, pp. 104–111. https://doi.org/10.1134/S0965544115020024

    Article  CAS  Google Scholar 

  22. Kovalenko, E.Yu., Golushkova, E.V., and Sagachenko, T.A. Petrol. Chem., 2016, vol. 56, pp. 101–108. https://doi.org/10.1134/S0965544116010047

    Article  CAS  Google Scholar 

  23. Bellamy, L., The Infra-red Spectra of Complex Molecules, Netherlands: Springer, 1975.

  24. Zenker, W., Anal. Chem., 1972, vol. 44, pp. 1235–1239. https://doi.org/10.1021/ac60315a027

    Article  CAS  Google Scholar 

  25. Painter, P.C., Snyder, R.W., Starsinic, M., Coleman, M.M., Kuehn, D.W., and Davis, A., Appl. Spectrosc., 1981, vol. 35, no. 5, pp. 475–485. https://doi.org/10.1366/0003702814732256

    Article  CAS  Google Scholar 

  26. Fuller, E.L.Jr. and Smyrl, N.R., Appl. Spectrosc., 1990, vol. 44, no. 3, pp. 451–461. https://doi.org/10.1366/0003702904086056

    Article  CAS  Google Scholar 

  27. Sobkowiak, M. and Painter, P., Fuel, 1992, vol. 71, no. 10, pp. 1105–1125. https://doi.org/10.1016/0016-2361(92)90092-3

    Article  CAS  Google Scholar 

  28. Ibarra, J.V., Moliner, R., and Bonet, A.J., Fuel, 1994, vol. 73(6), pp. 918–924. https://doi.org/10.1016/0016-2361(94)90287-9

    Article  CAS  Google Scholar 

  29. Ibarra, J.V., Muñoz, E., and Moliner, R., Org. Geochem., 1996, vol. 24, nos. 6–7, pp. 725–735. https://doi.org/10.1016/0146-6380(96)00063-0

    Article  CAS  Google Scholar 

  30. Lin, R. and Ritz, G.P., Appl. Spectrosc., 1993, vol. 47, no. 3, pp. 265–271. https://doi.org/10.1366/0003702934066794

    Article  CAS  Google Scholar 

  31. Lin, R. and Ritz, G.P., Org. Geochem., 1993, vol. 20, no. 6, pp. 695–706. https://doi.org/10.1016/0146-6380(93)90055-G

    Article  CAS  Google Scholar 

  32. Lis, G.P., Mastalerz, M., Schimmelmann, A., Lewan, M.D., and Stankiewicz, B.A., Org. Geochem., 2005, vol. 36, no. 11, pp. 1533–1552. https://doi.org/10.1016/j.orggeochem.2005.07.001

    Article  CAS  Google Scholar 

  33. Yao, S., Zhang, K., Jiao, K., and Hu, W., Explor. Exploit., 2011, vol. 29, no. 1, pp. 1–19 https://doi.org/10.1260/0144-5987.29.1.1

    Article  Google Scholar 

  34. Lu, X. and Redelius, P., Energy Fuels, 2006, vol. 20, no. 2, pp. 653–660. https://doi.org/10.1021/ef0503414

    Article  CAS  Google Scholar 

  35. Šaban, M., Jovančićević, B.S., Saračević, S., Hollerbach, A., and Vitorović, D., Org. Geochem., 1988, vol. 13, nos. 1–3, pp. 325–333. https://doi.org/10.1016/0146-6380(88)90052-6

    Article  Google Scholar 

  36. Šaban, M.M., Jovančićević, B.S., Glumičić, T., and Saračević, S., Org. Geochem., 1990, vol. 16, nos. 1–3, pp. 477–488. https://doi.org/10.1016/0146-6380(90)90063-6

    Article  Google Scholar 

  37. Barić, G., Mesić, I., and Jungwirth, M., Org. Geochem., 1998, vol. 29, nos. 1–3, pp. 571–582. https://doi.org/10.1016/S0146-6380(98)00096-5

    Article  Google Scholar 

  38. Maddams, W.F., Appl. Spectrosc., 1980, vol. 34, no. 3, pp. 245–267. https://doi.org/10.1366/0003702804730312

    Article  CAS  Google Scholar 

  39. Genov, G., Nodland, E., Barman Skaar, B., and Barth, T., Org. Geochem., 2008, vol. 39, no. 8, pp. 1229–1234. https://doi.org/10.1016/j.orggeochem.2008.04.006

    Article  CAS  Google Scholar 

  40. Mantsch, H.H. and McElhaney, R.N., Chem. Phys. Lipids, 1991, vol. 57, nos. 2–3, pp. 213–226. https://doi.org/10.1016/0009-3084(91)90077-O

    Article  CAS  PubMed  Google Scholar 

  41. Wiberg, K.B. and Murcko, M.A., J. Am. Chem. Soc., 1988, vol. 110, no. 24, pp. 8029–8038. https://doi.org/10.1021/ja00232a012

    Article  CAS  Google Scholar 

  42. Littke, R., Lückge, A., and Wilkes, H., in Proceedings of the Ocean Drilling Program, Scientific Results 157, College Station, USA, Texas, 1998.

  43. Bourbonniere, R.A. and Meyers, P.A., Limnol. Oceanogr., 1996, vol. 41, no. 2, pp. 352–359. https://doi.org/10.4319/lo.1996.41.2.0352

    Article  Google Scholar 

  44. Poynter, J., PhD Thesis, University of Bristol., 1989.

  45. Didyk, B.M., Simoneit, B.R.T., Brassell, S.C., and Eglinton, G., Nature, 1978, vol. 272, pp. 216–222. https://doi.org/10.1038/272216a0

    Article  CAS  Google Scholar 

  46. Peters, K.E., Walters, C.C., and Moldowan, J.M., The Biomarker Guide, Volume 2: Biomarkers and Isotopes in the Petroleum Exploration and Earth History, Cambridge, UK: Cambridge University Press, 2005.

  47. Shanmugam, G., Am. Assoc. Pet. Geol. Bull., 1985, vol. 69, no. 8, pp. 1241–1254. https://doi.org/10.1306/AD462BC3-16F7-11D7-8645000102C1865D

    Article  CAS  Google Scholar 

  48. Tissot, B.P. and Welte, D.H., Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration, Berlin: Springer-Verlag, 1978.

  49. Bray, E.E. and Evans, E.D., Geochim. Cosmochim. Acta, 1961, vol. 22, no. 1, pp. 2–15. https://doi.org/10.1016/0016-7037(61)90069-2

    Article  CAS  Google Scholar 

  50. Kostić, A., Thermal Evolution of Organic Matter and Petroleum Generation Modelling in the Pannonian Basin (Serbia), Belgrade: University of Belgrade, 2010.

  51. Stojanović, K., Kostić, A., and Mrkić, S., Tehnika, 2012, vol. 63, pp. 213.

    Google Scholar 

  52. Davis, J., Statistics and Data Analysis in Geology, New York: John Wiley & Sons, Inc., 2002, 3th ed.

  53. Lee, H., Oncel, N., Liu, B., Kukay, A., Altincicek, F., Varma, R.S., Shokouhimehr, M., and Ostadhassan, M., Energy Fuels, 2020, vol. 34, no. 3, pp. 2807–2815. https://doi.org/10.1021/acs.energyfuels.9b03851

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out with financial support from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract no. 451-03-9/2021-14/200168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Stevanovic.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 5, pp. 620–631 https://doi.org/10.31857/S0028242121050051.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stevanovic, J., Rakitin, A.R. & Stojanovic, K. Correlation between the Stretching Vibrations of Aliphatic Groups and the Structural and Geochemical Properties of Crude Oils of the Same Genetic Type Using the Case of the Turija-Sever Oil Field, Pannonian Basin, Serbia. Pet. Chem. 61, 1002–1010 (2021). https://doi.org/10.1134/S0965544121090024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121090024

Keywords:

Navigation