Skip to main content

Advertisement

Log in

Enhancing the Strength of Aluminum–Stainless Steel Spot Weld using Magnetic Pulses

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, the magnetic pulse spot welding of aluminum and stainless steel sheets was successfully performed by placing a perforated insulator mask between the sheets. In order to improve the strength of spot welds, the parameters of voltage, thickness of mask, thickness of driver and diameter of mask hole were studied. It was observed that the increase in process parameters improved the tensile strength by 7.7 MPa and reduced the weld width by 62.5 µm. However, simultaneous enhancement of the tensile strength and weld width was achieved by setting the voltage at 11.86 kV, diameter of mask hole at 9 mm, thickness of mask at 1 mm and thickness of driver at 1 mm. The microstructure analysis indicated that the increase in process parameters resulted in the refinement of grain size up to 14 µm and formation of intermetallic layers Fe4Al13 and Al13Cr2. However, the interface of spot weld was found to be free of any intermetallic layers and defects at the optimal values of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S. Wang, B. Zhou, X. Zhang, T. Sun, G. Li and J. Cui, Mechanical Properties and Interfacial Microstructures of Magnetic Pulse Welding Joints with Aluminum to Zinc-Coated Steel, J. Mater. Sci. Eng. A, 2020, 788, p 425-436.

    Google Scholar 

  2. J. Cui, L. Ye, C. Zhu, H. Geng and G. Li, Mechanical and Microstructure Investigations on Magnetic Pulse Welded Dissimilar AA3003-TC4 Joints, J. Mater. Eng. Perform., 2020, 29, p 712-722.

    Article  CAS  Google Scholar 

  3. H. Geng, Z. Xia, X. Zhang, G. Li and J. Cui, Microstructures and Mechanical Properties of the Welded AA5182/HC340LA Joint by Magnetic Pulse Welding, Mater. Charact., 2018, 138, p 229-237.

    Article  CAS  Google Scholar 

  4. Z. Lu, W. Gong, S. Chen, T. Yuan, C. Kan and X. Jiang, Interfacial Microstructure and Local Bonding Strength of Magnetic Pulse Welding Joint Between Commercially Pure Aluminum 1060 and AISI 304 stainless steel, J. Manuf. Process., 2019, 46, p 59-66.

    Article  Google Scholar 

  5. H. Geng, L. Sun, G. Li, J. Cui, L. Huang and Z. Xu, Fatigue Fracture Properties of Magnetic Pulse Welded Dissimilar Al-Fe lap Joints, Int J. Fatigue, 2019, 121, p 146-154.

    Article  CAS  Google Scholar 

  6. M. Sarvari, A. Abdollah-zadeh, H. Naffakh-Moosavy, A. Rahimi and H. Parsaeyan, Investigation of Collision Surfaces and Weld Interface in Magnetic Pulse Welding of Dissimilar Al/Cu Sheets, J. Manuf. Process., 2019, 45, p 356-367.

    Article  Google Scholar 

  7. C. Zhu, L. Sun, W. Gao, G. Li and J. Cui, The Effect of Temperature on Microstructure and Mechanical Properties of Al/Mg Lap Joints Manufactured by Magnetic Pulse Welding, J. Mater. Res. Technol., 2019, 8, p 3270-3280.

    Article  CAS  Google Scholar 

  8. S.D. Kore, P.P. Date, S.V. Kulkarni, S. Kumar, M.R. Kulkarni, S.V. Desai, R.K. Rajawat, K.V. Nagesh and D.P. Chakravarty, Application of Electromagnetic Impact Technique for Welding Copper-To-Stainless Steel Sheets, Int. J. Adv. Manuf. Technol., 2010, 54, p 949-955.

    Article  Google Scholar 

  9. S. Patra, K.S. Arora, M. Shome and S. Bysakh, Interface characteristics and performance of magnetic pulse welded copper-Steel tubes, J. Mater. Process. Tech., 2017, 245, p 278-286.

    Article  CAS  Google Scholar 

  10. A. Berlin, T.C. Nguyen, M.J. Worswick and Y. Zhou, Metallurgical Analysis of Magnetic Pulse Welds of AZ31 Magnesium Alloy, Sci. Technol. Weld. Join., 2011, 16, p 728-734.

    Article  CAS  Google Scholar 

  11. A. Ben-Artzy, A. Stern, N. Frage, V. Shribman and O. Sadot, Wave Formation Mechanism in Magnetic Pulse Welding, Int. J. Impact Eng., 2010, 37, p 397-404.

    Article  Google Scholar 

  12. Z. Lu, W. Gong, S. Chen, T. Yuan, C. Kan and X. Jiang, Interfacial Microstructure and Local Bonding Strength of Magnetic Pulse Welding Joint Between Commercially Pure Aluminum 1060 and AISI 304 Stainless Steel, J. Manuf. Proces., 2019, 46, p 59-66.

    Article  Google Scholar 

  13. M. Marya, S. Marya and D. Priem, On the Characteristics of Electromagnetic Welds Between Aluminum and Other Metals and Alloys, Weld, World, 2005, 49(5-6), p 74-84.

    CAS  Google Scholar 

  14. R.N. Raoelison, D. Racine, Z. Zhang, N. Buiron, D. Marceau and M. Rachik, Magnetic Pulse Welding: Interface of Al/Cu Joint and Investigation of Intermetallic Formation Effect on the Weld Features, J. Manuf. Proces., 2015, 16, p 427-434.

    Article  Google Scholar 

  15. P. Ghosh, S. Patra, S. Chatterjee and M. Shome, Microstructural Evaluation of Magnetic Pulse Welded Plain Carbon Steel Sheets, J. Mater. Process. Tech., 2018, 254, p 25-37.

    Article  CAS  Google Scholar 

  16. S. Wang, L. Xu, T. Sun, G. Li and J. Cui, Effects of Process Parameters on Mechanical Performance and Interfacial Morphology of Electromagnetic Pulse Welded Joints Between Aluminum and Galvanized Steel, J. Mater. Res. Technol., 2021, 10, p 552-564.

    Article  CAS  Google Scholar 

  17. Y. Che, L. Wang, D. Sun, H. Li and W. Geng, Microstructures and Mechanical Properties of Resistance Spot-Welded Steel/Aluminum Alloy Joints with Process Tapes, J. Mater. Eng. Perform., 2018, 27, p 5532-5544.

    Article  CAS  Google Scholar 

  18. H. Azhari-Saray, M. Sarkari-Khorrami, A. Nademi-Babahadi and S.F. Kashani-Bozorg, Dissimilar Resistance Spot Welding of 6061-T6 Aluminum Alloy/St-12 Carbon Steel Using A High Entropy Alloy Interlayer, Intermetallics, 2020, 124, p 876-889.

    Article  Google Scholar 

  19. V.K. Patel, S.D. Bhole and D.L. Chen, Ultrasonic Spot Welding of Aluminum to High-Strength Low-Alloy Steel: Microstructure, Tensile and Fatigue Properties, Metall. Mater. Trans. A, 2013, 45A, p 2055-2066.

    Google Scholar 

  20. Y. Lu, E. Mayton, H. Song, M. Kimchi and W. Zhang, Dissimilar Metal Joining of Aluminium to Zinc-Coated Steel by Ultrasonic Plus Resistance Spot Welding—Microstructure and Mechanical Properties, Sci. Technol. Weld. Join., 2019, 25, p 2018-2227.

    Google Scholar 

  21. A. Niroumand-Jadidi and S.F. Kashani-Bozorg, Microstructure and Property Assessment of Dissimilar Joints of 6061-T6 Al/Dual-Phase Steel Fabricated by Friction Stir Spot Welding, Weld. World, 2018, 62, p 751-765.

    Article  CAS  Google Scholar 

  22. P. Li, S. Chen, H. Dong, H. Ji, Y. Li, X. Gu, G. Yang, X. Zhang and X. Han, Interfacial Microstructure and Mechanical Properties of Dissimilar Aluminum/Steel Joint Fabricated via Refilled Friction Stir Spot Welding, J. Manuf. Process., 2020, 49, p 385-396.

    Article  CAS  Google Scholar 

  23. A.P. Manogaran, P. Manoharan, D. Priem, S. Marya and G. Racineux, Magnetic Pulse Spot Welding of Bimetals, J. Mater. Proces. Technol., 2014, 214, p 1236-1244.

    Article  CAS  Google Scholar 

  24. F. Deng, Q. Cao, X. Han and L. Li, Electromagnetic Pulse Spot Welding of Aluminum to Stainless Steel Sheets with a Field Shaper, Int. J. Adv. Manuf. Technol., 2018, 98, p 1903-1911.

    Article  Google Scholar 

  25. H. Zhang, N. Liu, X. Li, F. Deng, Q. Wang and H. Ding, A Novel Field Shaper with Slow-Varying Central Hole for Electromagnetic Pulse Welding of Sheet Metal, Int. J. Adv. Manuf. Technol., 2020, 108, p 2595-2606.

    Article  Google Scholar 

  26. J.S. Li, R.N. Raoelison, T. Sapanathan, Y.L. Hou and M. Rachik, Interface Evolution During Magnetic Pulse Welding Under Extremely High Strain Rate Collision: Mechanisms, Thermomechanical Kinetics and Consequences, Acta Mater., 2020, 195, p 404-415.

    Article  CAS  Google Scholar 

  27. M. Ayaz, M. Khandaei and Y. Vahidshad, Design and Optimization of an Integrated Multi-Layer Coil for Decreasing the Discharge Energy in Electromagnetic Welding Using Numerical And Experimental Methods, Weld. World, 2021, 65, p 211-227.

    Article  Google Scholar 

  28. E.R. Marsh and A.H. Slocum, An Integrated Approach to Structural Damping, Precis. Eng., 1996, 18, p 103-109.

    Article  Google Scholar 

  29. S. A. A. Akbari Mousavi, and P. Farhadi Sartangi, Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel, Mater. Des., 2009, 30 (3), p 459-468

  30. D.C. Montgomery, Design and Analysis of Experiments, 6th ed. Willy, New York, 2005.

    Google Scholar 

  31. R.N. Raoelison, N. Buiron, M. Rachik, D. Haye, G. Franz and M. Habak, Study of the Elaboration of a Practical Weldability Window in Magnetic Pulse Welding, J. Mater. Process. Technol., 2013, 213(8), p 1348-1354.

    Article  CAS  Google Scholar 

  32. ASTM E8, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Khandaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayaz, M., Khandaei, M. & Vahidshad, Y. Enhancing the Strength of Aluminum–Stainless Steel Spot Weld using Magnetic Pulses. J. of Materi Eng and Perform 31, 1204–1221 (2022). https://doi.org/10.1007/s11665-021-06235-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06235-9

Keywords

Navigation