Issue 19, 2021

All-in-one in situ colorimetric RT-LAMP assay for point-of-care testing of SARS-CoV-2

Abstract

The ongoing outbreaks of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have resulted in unprecedented challenges to global health. To effectively contain the COVID-19 transmission, rapid tests for detecting existing SARS-CoV-2 infections and assessing virus spread are critical. To address the huge need for ever-increasing tests, we developed a facile all-in-one nucleic acid testing assay by combining Si-OH activated glass bead (aGB)-based viral RNA fast extraction and in situ colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) detection in a single tube. aGBs demonstrate a strong ability to capture viral RNA in a guanidinium-based lysis buffer, and the purified aGBs/RNA composite, without RNA elution step, could be directly used to perform RT-LAMP assay. The assay was well characterized by using a novel SARS-CoV-2-like coronavirus GX/P2V, and showed a limit of detection (LOD) of 15 copies per μL in simulated clinical samples within 50 min. We further demonstrated our assay by testing simulated SARS-CoV-2 pseudovirus samples, showing an LOD of 32 copies per μL and high specificity without cross-reactivity with the most closely related GX/P2V or host DNA/RNA. The all-in-one approach developed in this study has the potential as a simple, scalable, and time-saving alternative for point-of-care testing of SARS-CoV-2 in low-income regions, as well as a promising tool for at-home testing.

Graphical abstract: All-in-one in situ colorimetric RT-LAMP assay for point-of-care testing of SARS-CoV-2

Supplementary files

Article information

Article type
Paper
Submitted
13 Jun 2021
Accepted
19 Aug 2021
First published
20 Aug 2021

Analyst, 2021,146, 6026-6034

All-in-one in situ colorimetric RT-LAMP assay for point-of-care testing of SARS-CoV-2

Y. He, L. Wang, X. An and Y. Tong, Analyst, 2021, 146, 6026 DOI: 10.1039/D1AN01043C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements