Skip to main content

Advertisement

Log in

The Effect of Resistance Training on Body Composition During and After Cancer Treatment: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 12 November 2021

A Commentary to this article was published on 13 September 2021

Abstract

Background

Changes in body composition during cancer treatments have been linked with poorer outcomes, and increased morbidity and mortality. The effect of resistance training (RT) on body composition in cancer cohorts is debated.

Objective

We conducted a systematic review and meta-analysis to determine the effect of RT on body composition during and after treatment.

Methods

We searched five electronic databases for articles up to 1 February 2021 and included randomized controlled trials that compared RT with a non-exercise control in adults with cancer. Risk of bias was assessed using the RoB 2 tool. Pairwise, random-effects meta-analysis was used to synthesize the available data.

Results

Overall, we included 15 studies (n = 1368). After treatment (11 studies), RT increased lean mass with moderate heterogeneity {0.41 kg [95% confidence interval (CI) 0.05, 0.76], p = 0.029; I2 = 47.1%, p = 0.02} and decreased fat mass with substantial heterogeneity (− 0.59 kg [95% CI − 1.05, − 0.12], p = 0.019; I2 = 69.1%, p < 0.001). During treatment (4 studies), RT did not increase lean mass (0.71 kg [95% CI − 0.04, 1.45], p = 0.05; I2 = 0.0%, p = 0.75) or reduce fat mass (0.00 kg [95% CI − 5.31, 5.30], p = 0.99; I2 = 0.0%, p = 0.62), both with no heterogeneity.

Conclusion

Modest improvements in body composition were observed following RT after cancer treatment; however, no changes were observed during treatment. These adaptations are markedly lower than those observed in healthy cohorts but may be clinically meaningful for the cancer survivorship population. At present it is unclear if these diminished adaptations are due to ineffective exercise prescriptions in cancer cohorts or due to an innate anabolic resistance as a result of cancer and its treatments.

Study registration

Open Science Framework (osf.io/x6z72).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

RT:

Resistance training

RM:

Repetition maximum

DXA:

Dual-energy X-ray absorptiometry

MRI:

Magnetic resonance imaging

CT:

Computerized tomography

References

  1. Aoyama T. Perioperative body composition changes in the multimodal treatment of gastrointestinal cancer. Surg Today. 2020;50(3):217–22. https://doi.org/10.1007/s00595-019-01815-8.

    Article  PubMed  Google Scholar 

  2. Demark-Wahnefried W, Peterson BL, Winer EP, et al. Changes in weight, body composition, and factors influencing energy balance among premenopausal breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol. 2001;19(9):2381–9. https://doi.org/10.1200/jco.2001.19.9.2381.

    Article  CAS  PubMed  Google Scholar 

  3. Miyata H, Sugimura K, Motoori M, et al. Clinical assessment of sarcopenia and changes in body composition during neoadjuvant chemotherapy for esophageal cancer. Anticancer Res. 2017;37(6):3053–9. https://doi.org/10.21873/anticanres.11660.

    Article  PubMed  Google Scholar 

  4. Fattouh M, Chang GY, Ow TJ, et al. Association between pretreatment obesity, sarcopenia, and survival in patients with head and neck cancer. Head Neck. 2019;41(3):707–14. https://doi.org/10.1002/hed.25420.

    Article  PubMed  Google Scholar 

  5. Chung E, Lee HS, Cho ES, et al. Changes in body composition during adjuvant FOLFOX chemotherapy and overall survival in non-metastatic colon cancer. Cancers (Basel). 2019;12(1):60. https://doi.org/10.3390/cancers12010060.

    Article  CAS  Google Scholar 

  6. Kurk SA, Peeters PHM, Dorresteijn B, et al. Loss of skeletal muscle index and survival in patients with metastatic colorectal cancer: Secondary analysis of the phase 3 CAIRO3 trial. Cancer Med. 2020;9(3):1033–43. https://doi.org/10.1002/cam4.2787.

    Article  CAS  PubMed  Google Scholar 

  7. Westcott WL. Resistance training is medicine: effects of strength training on health. Curr Sports Med Rep. 2012;11(4):209–16. https://doi.org/10.1249/JSR.0b013e31825dabb8.

    Article  PubMed  Google Scholar 

  8. McLeod JC, Stokes T, Phillips SM. Resistance exercise training as a primary countermeasure to age-related chronic disease. Front Physiol. 2019;10:645. https://doi.org/10.3389/fphys.2019.00645.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Irwin ML, McTiernan A, Baumgartner RN, et al. Changes in body fat and weight after a breast cancer diagnosis: influence of demographic, prognostic, and lifestyle factors. Am J Clin Oncol. 2005;23(4):774–82. https://doi.org/10.1200/JCO.2005.04.036.

    Article  Google Scholar 

  10. Carmichael A. Obesity as a risk factor for development and poor prognosis of breast cancer. BJOG. 2006;113(10):1160–6. https://doi.org/10.1111/j.1471-0528.2006.01021.x.

    Article  CAS  PubMed  Google Scholar 

  11. Hayes SC, Newton RU, Spence RR, et al. The Exercise and Sports Science Australia position statement: exercise medicine in cancer management. J Sci Med Sport. 2019;22(11):1175–99. https://doi.org/10.1016/j.jsams.2019.05.003.

    Article  PubMed  Google Scholar 

  12. Figueiredo VC, de Salles BF, Trajano GS. Volume for muscle hypertrophy and health outcomes: the most effective variable in resistance training. Sports Med. 2018;48(3):499–505. https://doi.org/10.1007/s40279-017-0793-0.

    Article  PubMed  Google Scholar 

  13. Keilani M, Hasenoehrl T, Baumann L, et al. Effects of resistance exercise in prostate cancer patients: a meta-analysis. Support Care Cancer. 2017;25(9):2953–68. https://doi.org/10.1007/s00520-017-3771-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wanchai A, Armer JM. Effects of weight-lifting or resistance exercise on breast cancer-related lymphedema: a systematic review. Int J Nurs Sci. 2019;6(1):92–8. https://doi.org/10.1016/j.ijnss.2018.12.006.

    Article  PubMed  Google Scholar 

  15. Fuller JT, Hartland MC, Maloney LT, et al. Therapeutic effects of aerobic and resistance exercises for cancer survivors: a systematic review of meta-analyses of clinical trials. Br J Sports Med. 2018;52(20):1311. https://doi.org/10.1136/bjsports-2017-098285.

    Article  PubMed  Google Scholar 

  16. Dos Santos WDN, Gentil P, de Moraes RF, et al. Chronic effects of resistance training in breast cancer survivors. Biomed Res Int. 2017;2017:8367803. https://doi.org/10.1155/2017/8367803.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brown JC, Cespedes Feliciano EM, Caan BJ. The evolution of body composition in oncology-epidemiology, clinical trials, and the future of patient care: facts and numbers. J Cachexia Sarcopenia Muscle. 2018;9(7):1200–8. https://doi.org/10.1002/jcsm.12379.

    Article  PubMed  Google Scholar 

  18. Strasser B, Steindorf K, Wiskemann J, et al. Impact of resistance training in cancer survivors: a meta-analysis. Med Sci Sports Exerc. 2013;45(11):2080–90. https://doi.org/10.1249/MSS.0b013e31829a3b63.

    Article  PubMed  Google Scholar 

  19. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339: b2535. https://doi.org/10.1136/bmj.b2535.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Borga M, West J, Bell JD, et al. Advanced body composition assessment: from body mass index to body composition profiling. J Investig Med. 2018;66(5):1–9. https://doi.org/10.1136/jim-2018-000722.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang ZR, Sun F, Zhan SY. Risk on bias assessment: (2) Revised Cochrane risk of bias tool for individually randomized, parallel group trials (RoB2.0). Zhonghua Liu Xing Bing Xue Za Zhi. 2017;38(9):1285–91. https://doi.org/10.3760/cma.j.issn.0254-6450.2017.09.028.

    Article  CAS  PubMed  Google Scholar 

  22. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6. https://doi.org/10.1136/bmj.39489.470347.AD.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36(3):1–48.

    Article  Google Scholar 

  24. IntHout J, Ioannidis JPA, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol. 2014;14(1):25. https://doi.org/10.1186/1471-2288-14-25.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Christensen JF, Jones LW, Tolver A, et al. Safety and efficacy of resistance training in germ cell cancer patients undergoing chemotherapy: a randomized controlled trial. Br J Cancer. 2014;111(1):8–16. https://doi.org/10.1038/bjc.2014.273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Courneya KS, Segal RJ, Mackey JR, et al. Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. J Clin Oncol. 2007;25(28):4396–404. https://doi.org/10.1200/JCO.2006.08.2024.

    Article  PubMed  Google Scholar 

  27. Newton RU, Galvão DA, Spry N, et al. Exercise mode specificity for preserving spine and hip bone mineral density in prostate cancer patients. Med Sci Sports Exerc. 2019;51(4):607–14. https://doi.org/10.1249/MSS.0000000000001831.

    Article  CAS  PubMed  Google Scholar 

  28. Nilsen TS, Raastad T, Skovlund E, et al. Effects of strength training on body composition, physical functioning, and quality of life in prostate cancer patients during androgen deprivation therapy. Acta Oncol. 2015;54(10):1805–13. https://doi.org/10.3109/0284186X.2015.1037008.

    Article  CAS  PubMed  Google Scholar 

  29. Dos Santos WDN, Vieira A, de Lira CAB, et al. Once a week resistance training improves muscular strength in breast cancer survivors: a randomized controlled trial. Integr Cancer Ther. 2019;18:1534735419879748. https://doi.org/10.1177/1534735419879748.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schmitz KH, Ahmed RL, Hannan PJ, et al. Safety and efficacy of weight training in recent breast cancer survivors to alter body composition, insulin, and insulin-like growth factor axis proteins. Cancer Epidemiol Biomark Prev. 2005;14(7):1672–80. https://doi.org/10.1158/1055-9965.EPI-04-0736.

    Article  CAS  Google Scholar 

  31. Schmitz KH, Ahmed RL, Troxel A, et al. Weight lifting in women with breast-cancer-related lymphedema. N Engl J Med. 2009;361(7):664–73. https://doi.org/10.1056/NEJMoa0810118.

    Article  CAS  PubMed  Google Scholar 

  32. Schmitz KH, Ahmed RL, Troxel AB, et al. Weight lifting for women at risk for breast cancer-related lymphedema: a randomized trial. JAMA. 2010;304(24):2699–705. https://doi.org/10.1001/jama.2010.1837.

    Article  CAS  PubMed  Google Scholar 

  33. Segal RJ, Reid RD, Courneya KS, et al. Randomized controlled trial of resistance or aerobic exercise in men receiving radiation therapy for prostate cancer. J Clin Oncol. 2009;27(3):344–51. https://doi.org/10.1200/JCO.2007.15.4963.

    Article  PubMed  Google Scholar 

  34. Winters-Stone KM, Dieckmann N, Maddalozzo GF, et al. Resistance exercise reduces body fat and insulin during androgen-deprivation therapy for prostate cancer. Oncol Nurs Forum. 2015;42(4):348–56. https://doi.org/10.1188/15.ONF.348-356.

    Article  PubMed  Google Scholar 

  35. Winters-Stone KM, Dobek J, Nail L, Bennett JA, et al. Strength training stops bone loss and builds muscle in postmenopausal breast cancer survivors: a randomized, controlled trial. Breast Cancer Res Treat. 2011;127(2):447–56. https://doi.org/10.1007/s10549-011-1444-z.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Winters-Stone KM, Dobek J, Nail LM, et al. Impact + resistance training improves bone health and body composition in prematurely menopausal breast cancer survivors: a randomized controlled trial. Osteoporos Int. 2013;24(5):1637–46. https://doi.org/10.1007/s00198-012-2143-2.

    Article  CAS  PubMed  Google Scholar 

  37. Winters-Stone KM, Lyons KS, Dobek J, et al. Benefits of partnered strength training for prostate cancer survivors and spouses: results from a randomized controlled trial of the Exercising Together project. J Cancer Surviv. 2016;10(4):633–44. https://doi.org/10.1007/s11764-015-0509-0.

    Article  PubMed  Google Scholar 

  38. Kamel FH, Basha MA, Alsharidah AS, et al. Resistance training impact on mobility, muscle strength and lean mass in pancreatic cancer cachexia: a randomized controlled trial. Clin Rehabil. 2020;34(11):1391–9. https://doi.org/10.1177/0269215520941912.

    Article  PubMed  Google Scholar 

  39. Lam T, Cheema B, Hayden A, et al. Androgen deprivation in prostate cancer: benefits of home-based resistance training. Sports Med Open. 2020;6(1):59. https://doi.org/10.1186/s40798-020-00288-1.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Freedman RJ, Aziz N, Albanes D, et al. Weight and body composition changes during and after adjuvant chemotherapy in women with breast cancer. J Clin Endocrinol. 2004;89(5):2248–53. https://doi.org/10.1210/jc.2003-031874.

    Article  CAS  Google Scholar 

  41. Haseen F, Murray LJ, Cardwell CR, et al. The effect of androgen deprivation therapy on body composition in men with prostate cancer: Systematic review and meta-analysis. J Cancer Surviv. 2010;4(2):128–39. https://doi.org/10.1007/s11764-009-0114-1.

    Article  PubMed  Google Scholar 

  42. Aversa Z, Costelli P, Muscaritoli M. Cancer-induced muscle wasting: latest findings in prevention and treatment. Ther Adv Med Oncol. 2017;9(5):369–82. https://doi.org/10.1177/1758834017698643.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Villaseñor A, Ballard-Barbash R, Baumgartner K, et al. Prevalence and prognostic effect of sarcopenia in breast cancer survivors: the HEAL study. J Cancer Surviv. 2012;6(4):398–406. https://doi.org/10.1007/s11764-012-0234-x.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sakuma K, Aoi W, Yamaguchi A. Molecular mechanism of sarcopenia and cachexia: recent research advances. Pflugers Arch. 2017;469(5–6):573–91. https://doi.org/10.1007/s00424-016-1933-3.

    Article  CAS  PubMed  Google Scholar 

  45. Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International Working Group on Sarcopenia. J Am Med Dir Assoc. 2011;12(4):249–56. https://doi.org/10.1016/j.jamda.2011.01.003.

    Article  PubMed  Google Scholar 

  46. von Haehling S, Anker SD. Cachexia as a major underestimated and unmet medical need: facts and numbers. J Cachexia Sarcopenia Muscle. 2010;1(1):1–5.

    Article  Google Scholar 

  47. Cole CL, Kleckner IR, Jatoi A, et al. The role of systemic inflammation in cancer-associated muscle wasting and rationale for exercise as a therapeutic intervention. JCSM Clin Rep. 2018;3(2):e00065.

    PubMed  PubMed Central  Google Scholar 

  48. Christensen JF, Jones LW, Andersen JL, et al. Muscle dysfunction in cancer patients. Ann Oncol. 2014;25(5):947–58. https://doi.org/10.1093/annonc/mdt551.

    Article  CAS  PubMed  Google Scholar 

  49. Harimoto N, Shirabe K, Yamashita YI, et al. Sarcopenia as a predictor of prognosis in patients following hepatectomy for hepatocellular carcinoma. Br J Surg. 2013;100(11):1523–30. https://doi.org/10.1002/bjs.9258.

    Article  CAS  PubMed  Google Scholar 

  50. Coelen RJ, van Gulik TM. Preoperative sarcopenia negatively impacts postoperative outcomes following major hepatectomy with extrahepatic bile duct resection. World J Surg. 2015;39(9):2368–9. https://doi.org/10.1007/s00268-015-3053-1.

    Article  PubMed  Google Scholar 

  51. Benito PJ, Cupeiro R, Ramos-Campo DJ, et al. A systematic review with meta-analysis of the effect of resistance training on whole-body muscle growth in healthy adult males. Int J Environ Res Public Health. 2020;17(4):1285.

    Article  PubMed Central  Google Scholar 

  52. Hagstrom AD, Marshall PW, Halaki M, et al. The effect of resistance training in women on dynamic strength and muscular hypertrophy: a systematic review with meta-analysis. Sports Med. 2020;50(6):1075–93. https://doi.org/10.1007/s40279-019-01247-x.

    Article  PubMed  Google Scholar 

  53. Peterson MD, Sen A, Gordon PM. Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sports Exerc. 2011;43(2):249–58. https://doi.org/10.1249/MSS.0b013e3181eb6265.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jones MD, Wewege MA, Hackett DA, et al. Sex differences in adaptations in muscle strength and size following resistance training in older adults: a systematic review and meta-analysis. Sports Med. 2021;51(3):503–17. https://doi.org/10.1007/s40279-020-01388-4.

    Article  PubMed  Google Scholar 

  55. Borde R, Hortobágyi T, Granacher U. Dose-response relationships of resistance training in healthy old adults: a systematic review and meta-analysis. Sports Med. 2015;45(12):1693–720. https://doi.org/10.1007/s40279-015-0385-9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Meneses-Echavez JF, Rodriguez-Prieto I, Elkins M, et al. Analysis of reporting completeness in exercise cancer trials: a systematic review. BMC Med Res Methodol. 2019;19(1):220. https://doi.org/10.1186/s12874-019-0871-0.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Neil-Sztramko SE, Medysky ME, Campbell KL, et al. Attention to the principles of exercise training in exercise studies on prostate cancer survivors: a systematic review. BMC Cancer. 2019;19(1):321. https://doi.org/10.1186/s12885-019-5520-9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Neil-Sztramko SE, Winters-Stone KM, Bland KA, et al. Updated systematic review of exercise studies in breast cancer survivors: attention to the principles of exercise training. Br J Sports Med. 2019;53(8):504–12. https://doi.org/10.1136/bjsports-2017-098389.

    Article  PubMed  Google Scholar 

  59. Andreoli A, Scalzo G, Masala S, et al. Body composition assessment by dual-energy X-ray absorptiometry (DXA). Radiol Med (Torino). 2009;114(2):286–300. https://doi.org/10.1007/s11547-009-0369-7.

    Article  CAS  Google Scholar 

  60. Barreira TV, Tseh W. The effects of acute water ingestion on body composition analyses via Dual-Energy X-Ray Absorptiometry. Clin Nutr. 2020;39(12):3836–8. https://doi.org/10.1016/j.clnu.2020.03.037.

    Article  CAS  PubMed  Google Scholar 

  61. Hui D, Dev R, Bruera E. The last days of life: symptom burden and impact on nutrition and hydration in cancer patients. Curr Opin Support Palliat Care. 2015;9(4):346–54. https://doi.org/10.1097/spc.0000000000000171.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Marinangeli CP, Kassis AN. Use of dual X-ray absorptiometry to measure body mass during short- to medium-term trials of nutrition and exercise interventions. Nutr Rev. 2013;71(6):332–42. https://doi.org/10.1111/nure.12025.

    Article  PubMed  Google Scholar 

  63. Price KA. Hydration in cancer patients. Curr Opin Support Palliat Care. 2010;4(4):276–80. https://doi.org/10.1097/SPC.0b013e32833e48d1.

    Article  PubMed  Google Scholar 

  64. Tinsley GM, Morales E, Forsse JS, Grandjean PW. Impact of acute dietary manipulations on DXA and BIA body composition estimates. Med Sci Sports Exerc. 2017;49(4):823–32. https://doi.org/10.1249/mss.0000000000001148.

    Article  CAS  PubMed  Google Scholar 

  65. Toomey CM, Cremona A, Hughes K, et al. A review of body composition measurement in the assessment of health. Top Clin Nutr. 2015;30(1):16–32. https://doi.org/10.1097/tin.0000000000000017.

    Article  Google Scholar 

  66. El Maghraoui A, Achemlal L, Bezza A. Monitoring of dual-energy X-ray absorptiometry measurement in clinical practice. J Clin Densitom. 2006;9(3):281–6. https://doi.org/10.1016/j.jocd.2006.03.014.

    Article  PubMed  Google Scholar 

  67. Hangartner TN, Warner S, Braillon P, et al. The official positions of the international society for clinical densitometry: acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. J Clin Densitom. 2013;16(4):520–36. https://doi.org/10.1016/j.jocd.2013.08.007.

    Article  PubMed  Google Scholar 

  68. Bazzocchi A, Ponti F, Albisinni U, et al. DXA: technical aspects and application. Eur J Radiol. 2016;85(8):1481–92. https://doi.org/10.1016/j.ejrad.2016.04.004.

    Article  PubMed  Google Scholar 

  69. Nana A, Slater GJ, Hopkins WG, et al. Importance of standardized DXA protocol for assessing physique changes in athletes. Int J Sport Nutr. 2016;26(3):259–67. https://doi.org/10.1123/ijsnem.2013-0111.

    Article  Google Scholar 

  70. Wells JC, Fewtrell MS. Measuring body composition. Arch Dis Child. 2006;91(7):612–7. https://doi.org/10.1136/adc.2005.085522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Morton RW, Murphy KT, McKellar SR, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2018;52(6):376–84. https://doi.org/10.1136/bjsports-2017-097608.

    Article  PubMed  Google Scholar 

  72. Madzima TA, Ormsbee MJ, Schleicher EA, et al. Effects of resistance training and protein supplementation in breast cancer survivors. Med Sci Sports Exerc. 2017;49(7):1283–92. https://doi.org/10.1249/mss.0000000000001250.

    Article  CAS  PubMed  Google Scholar 

  73. Pamoukdjian F, Bouillet T, Lévy V, et al. Prevalence and predictive value of pre-therapeutic sarcopenia in cancer patients: a systematic review. Clin Nutr. 2018;37(4):1101–13. https://doi.org/10.1016/j.clnu.2017.07.010.

    Article  PubMed  Google Scholar 

  74. Prado CMM, Baracos VE, McCargar LJ, et al. Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. J Clin Cancer Res. 2009;15(8):2920–6. https://doi.org/10.1158/1078-0432.CCR-08-2242.

    Article  CAS  Google Scholar 

  75. Shachar SS, Deal AM, Weinberg M, et al. Skeletal muscle measures as predictors of toxicity, hospitalization, and survival in patients with metastatic breast cancer receiving taxane-based chemotherapy. J Clinical Cancer Research. 2017;23(3):658–65. https://doi.org/10.1158/1078-0432.CCR-16-0940.

    Article  CAS  Google Scholar 

  76. Shachar SS, Deal AM, Weinberg M, et al. Body composition as a predictor of toxicity in patients receiving anthracycline and taxane-based chemotherapy for early-stage breast cancer. J Clin Cancer Res. 2017;23(14):3537–43. https://doi.org/10.1158/1078-0432.CCR-16-2266.

    Article  CAS  Google Scholar 

  77. Koeppel M, Mathis K, Schmitz KH, et al. Muscle Hypertrophy in cancer patients and survivors via strength training. A meta-analysis and meta-regression. Crit Rev Oncol. 2021;163: 103371. https://doi.org/10.1016/j.critrevonc.2021.103371.

    Article  Google Scholar 

  78. Vergara-Fernandez O, Trejo-Avila M, Salgado-Nesme N. Sarcopenia in patients with colorectal cancer: a comprehensive review. World J Clin Cases. 2020;8(7):1188–202. https://doi.org/10.12998/wjcc.v8.i7.1188.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019;393(10191):2636–46. https://doi.org/10.1016/S0140-6736(19)31138-9.

    Article  PubMed  Google Scholar 

  80. Beaudart C, Zaaria M, Pasleau F, et al. Health outcomes of sarcopenia: a systematic review and meta-analysis. PLoS ONE. 2017;12(1): e0169548. https://doi.org/10.1371/journal.pone.0169548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda D. Hagstrom.

Ethics declarations

Funding

The authors disclose no funding was received for this project. Michael A. Wewege was supported by a Postgraduate Scholarship from the National Health and Medical Research Council of Australia, a School of Medical Sciences Top-Up Scholarship from the University of New South Wales, and a PhD Supplementary Scholarship from Neuroscience Research Australia. Hayley B. Leake was supported by an Australian Government Research Training Program Scholarship.

Conflicts of interest

Briana Clifford, Sean Koizumi, Michael A. Wewege, Hayley B. Leake, Lauren Ha, Eliza Macdonald, Ciaran M. Fairman and Amanda D. Hagstrom declare they have no conflicts of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

The data and R script used in the meta-analysis are also available on the Open Science Framework (osf.io/x6z72).

Author contributions

Conceptualization: BC, ADH. Methodology: BC, ADH, MAW. Formal analysis: MAW. Investigation: all authors. Project administration: ADH. Validation: ADH, BC. Supervision: ADH. Visualization: MAW. Writing—original draft: BC, ADH. Writing—review and editing: all authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2951 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clifford, B., Koizumi, S., Wewege, M.A. et al. The Effect of Resistance Training on Body Composition During and After Cancer Treatment: A Systematic Review and Meta-Analysis. Sports Med 51, 2527–2546 (2021). https://doi.org/10.1007/s40279-021-01542-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01542-6

Navigation