Skip to main content

Advertisement

Log in

Investigation of the relationship between GSTM1 gene variations and serum trace elements, plasma malondialdehyde levels in patients with colorectal cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The aim of this study is to investigate of the relationship between GSTM1 gene variations and serum trace elements, plasma malondialdehyde levels in patient with colorectal cancer.

Mateials and Methods.

Genotype distributions of GSTM1 gene variations were determined using real-time polymerase chain reaction method. Serum trace element levels were determined using atomic absorption spectrophotometer method and plasma MDA levels were measurement by spectrophotometric method.

Results

Serum Cu levels, plasma MDA levels and Cu/Zn ratio were determined significantly higher in the group of CRC patient carrying the GA heterozygous genotype of the GSTM1 (rs 112,778,559) gene variation compared to healthy controls (p < 0.05). Serum Cu, Zn levels, plasma MDA levels and Cu/Zn ratio were determined significantly higher in patients carrying GG homozygous genotype of the GSTM1 (rs 112778559) gene variation compared to healthy controls carrying same genotype (p < 0.05). Serum Cu, Zn levels, plasma MDA levels and Cu/Zn ratio were determined significantly higher in the group of CRC patient carrying the GG homozygous genotype of the GSTM1 (rs 12068997) gene variation compared to healthy controls (p < 0.05). On the other hand, serum Se levels were detected significantly lower in CRC patients carrying GA heterozygous and GG homozygous genotypes for GSTM1 (rs 112,778,559) and (rs 12,068,997) gene variations compared to healthy controls (p < 0.05).

Conclusion

In our study, the evaluation of serum Cu, Zn and Se trace element levels and plasma MDA levels according to GSTM1 gene variations genotype distributions were enabled to obtain important biomarkers in terms of CRC development and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rašić I, Rašić A, Akšamija G et al (2018) The relationship between serum level of malondialdehyde and progression of colorectal cancer. Acta Clin Croat 57:411–416

    PubMed  PubMed Central  Google Scholar 

  2. Tavassoli E, Reisi M, Javadzad SH et al (2014) The effect of education on the improvement of fruits and vegetables consumption aiming to preventing colorectal cancer. Gastroenterol Hepatol Bed Bench 7(2):94–100

    PubMed  PubMed Central  Google Scholar 

  3. Buyukdogan M, Boruban MC, Artac M et al (2009) Frequency of cytochrome 450 (CYP2C9 and CYP2C19) genetic polymorphisms in patients with colorectal carsinoma. Int J Hematol Oncol 19(3):134–139

    CAS  Google Scholar 

  4. Janion K, Szczepańska E, Nowakowska-Zajdel E et al (2020) Selected oxidative stress markers in colorectal cancer patients in relation to primary tumor location-a preliminary research. Medicina (Kaunas). https://doi.org/10.3390/medicina56020047

    Article  Google Scholar 

  5. Song L, Yang C, He X-F (2020) Individual and combined effects of GSTM1 and GSTT1 polymorphisms on colorectal cancer risk: an updated meta-analysis. Biosci Rep 28:40(8):BSR20201927.https://doi.org/10.1042/BSR20201927.

  6. Pacholak LM, Amarante MK, Guembarovski RL et al (2020) Polymorphisms in GSTT1 and GSTM1 genes as possible risk factors for susceptibility to breast cancer development and their influence in chemotherapy response: a systematic review. Mol Biol Rep 47(7):5495–5501

    Article  CAS  Google Scholar 

  7. Medjani S, Chellat-Rezgoune D, Kezai T et al (2020) Association of CYP1A1, GSTM1 and GSTT1 gene polymorphisms with risk of prostate cancer in Algerian population. Afr J Urol 26(1):44. https://doi.org/10.1186/s12301-020-00049-2

    Article  Google Scholar 

  8. Albarakati N, Khayyat D, Dallol A et al (2019) The prognostic impact of GSTM1/GSTP1genetic variants in bladder Cancer. BMC Cancer 19(1):991. https://doi.org/10.1186/s12885-019-6244-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Klusek J, Nasierowska-Guttmejer A, Kowalik A, Wawrzycka I, Lewitowicz P, Chrapek M, Głuszek S (2018) GSTM1, GSTT1, and GSTP1 polymorphisms and colorectal cancer risk in Polish nonsmokers. Oncotarget 9(30):21224–21230. https://doi.org/10.18632/oncotarget.25031

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang M, Zeng Y, Zhao F, Huang Y (2018) Association of glutathione S-transferase M1 polymorphisms in the colorectal cancer risk: A meta-analysis. J Can Res Ther 14(1):176–183

    Article  CAS  Google Scholar 

  11. Wan Rashidi WN, Abu Bakar S (2019) Glutathione S-Transferase: an overview on distribution of GSTM1 and GSTT1 polymorphisms in Malaysian and other populations. Mal J Med Health Sci 15(SP2):85–95

    Google Scholar 

  12. Yetişgin F, Bilici M, Esen R (2021) Evaluation of serum levels of trace elements in myeloproliferative neoplasms: a case-control study. Eastern J Med 26(2):344–350

    Article  Google Scholar 

  13. Popescu E, Stanescu AMA (2019) Trace elements and cancer. Medicina Moderna-Modern Medicine 26(4):169–175

    Article  Google Scholar 

  14. Saleh SAK, Adly HM, Altaf A et al (2020) Serum levels of selenium, zinc, copper, manganese, and iron in prostate cancer patients. Curr Urol 14:44–49

    Article  CAS  Google Scholar 

  15. Wang H, Liu H, Zhou M et al (2020) Correlations between 13 trace elements and circulating tumor cells in patients with colorectal cancer in Guangzhou. China Biol Trace Elem Res 198(1):58–67

    Article  CAS  Google Scholar 

  16. Osredkar J, Sustar N (2011) Copper and zinc, biological role and significance of copper/zinc imbalance. J Clinic Toxicol S 3:001. https://doi.org/10.4172/2161-0495.S3-001

    Article  Google Scholar 

  17. Ferlay J, Shin HR, Bray F et al (2010) Estimates of worldwide burden of cancer in 2008: Globocan 2008 International journal of cancer. Journal international du cancer 127(12):2893–2917

    Article  CAS  Google Scholar 

  18. Cunningham D, Atkin W, Lenz HJ et al (2010) Colorectal cancer. Lancet 375(9719):1030–1047

    Article  Google Scholar 

  19. Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: Molecular basis of colorectal cancer. New Engl J Med 361(25):2449–2460

    Article  CAS  Google Scholar 

  20. Fearon ER (2011) Molecular genetics of colorectal cancer. Annu Rev Pathol 6:479–507. https://doi.org/10.1146/annurev-pathol-011110-130235

    Article  CAS  PubMed  Google Scholar 

  21. Sánchez-Siles M, Pelegrín-Hernández JP, Hellin-Meseguer D et al (2020) Genotype of null polymorphisms in genes GSTM1, GSTT1, CYP1A1, and CYP1A1*2A (rs4646903T>C) / CYP1A1*2C (rs1048943 A>G) in patients with larynx cancer in southeast Spain. Cancers 12(9):2478. https://doi.org/10.3390/cancers12092478

    Article  CAS  PubMed Central  Google Scholar 

  22. Miao LF, Ye XH, He XF (2020) Individual and combined effects of GSTM1, GSTT1, and GSTP1 polymorphisms on breast cancer risk: a meta-analysis and re-analysis of systematic meta-analyses. PLoS ONE 15(3):e0216147. https://doi.org/10.1371/journal.pone.0216147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chirila DN, Chirila MD, Istoan SA et al (2018) The glutathione s-transferases (GSTS) gene polymorphisms in colorectal cancers. Human Veterinary Med 10(2):93–97

    CAS  Google Scholar 

  24. Hamachi T, Tajima O, Uezono K et al (2013) CYP1A1, GSTM1, GSTT1 and NQO1 polymorphisms and colorectal adenomas in Japanese men. World J Gastroenterol 19(25):4023–4030. https://doi.org/10.3748/wjg.v19.i25.4023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Klusek J, Nasierowska-Guttmejer A, Kowalik A et al (2019) The influence of red meat on colorectal cancer occurrence is dependent on the genetic polymorphisms of S-glutathione transferase genes. Nutrients 11(7):1682. https://doi.org/10.3390/nu11071682

    Article  CAS  PubMed Central  Google Scholar 

  26. Kaba M, Pirinççi N, Yüksel MB et al (2015) Serum levels of trace elements in patients with testicular cancers. Int Braz J Urol 41(6):1101–1107. https://doi.org/10.1590/S1677-5538.IBJU.2014.0460

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lossow K, Schwarz M, Kipp AP (2021) Are trace element concentrations suitable biomarkers for the diagnosis of cancer? Redox Biol 42:101900. https://doi.org/10.1016/j.redox.2021.101900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choi R, Kim MJ, Sohn I et al (2018) Serum trace elements and their associations with breast cancer subgroups in Korean breast cancer patients. Nutrients 11(1):37. https://doi.org/10.3390/nu11010037

    Article  CAS  PubMed Central  Google Scholar 

  29. Gowri Naidu B, Sarita P, Naga Raju GJ, Tiwari MK (2019) Multivariate analysis of trace elemental data obtained from blood serum of breast cancer patients using SRXRF. Results Phys 12:673–680

    Article  Google Scholar 

  30. Ozmen H, Erulas FA, Karatas F, Cukurovali A, Yalcin O (2006) Comparison of the concentration of trace metals (Ni, Zn Co, Cu and Se), Fe, vitamins A, C and E, and lipid peroxidation in patients with prostate cancer. Clin Chem Lab Med 44(2):175–179. https://doi.org/10.1515/CCLM.2006.032

    Article  CAS  PubMed  Google Scholar 

  31. Zabłocka-Słowińska K, Płaczkowska S, Prescha A, Pawełczyk K, Porębska I, Kosacka M, Pawlik-Sobecka L, Grajeta H (2018) Serum and whole blood Zn, Cu and Mn profiles and their relation to redox status in lung cancer patients. J Trace Elem Med Biol 45:78–84. https://doi.org/10.1016/j.jtemb.2017.09.024

    Article  CAS  PubMed  Google Scholar 

  32. Gecit İ, Kavak S, Meral I, Pirinci N, Güneş M, Demir H et al (2011) Effects of shock waves on oxidative stress, antioxidant enzyme and element levels in kidney of rats. Biol Trace Elem Res 144:1069–1076

    Article  CAS  Google Scholar 

  33. Pirincci N, Gecit I, Gunes M, Kaba M, Tanik S, Yuksel MB et al (2013) Levels of serum trace elements in renal cell carcinoma cases. Asian Pac J Cancer Prev 14:499–502

    Article  Google Scholar 

  34. Wu T, Sempos CT, Freudenheim JL, Muti P, Smit E (2004) Serum iron, copper and zinc concentrations and risk of cancer mortality in US adults. Ann Epidemiol 14:195–201

    Article  Google Scholar 

  35. Cunzhi H, Jiexian J, Xianwen Z, Jingang G, Shumin Z, Lili D (2003) Serum and tissue levels of six trace elements and copper/zinc ratio in patients with cervical cancer and uterine myoma. Biol Trace Elem Res 94:113–122

    Article  Google Scholar 

  36. Yaman M, Kaya G, Simsek M (2007) Comparison of trace element concentrations in cancerous and noncancerous human endometrial and ovary tissues. Int J Gynecol Cancer 17:220–228

    Article  CAS  Google Scholar 

  37. Karlinskiĭ VM, Bogomolova GG (1985) Change in zinc metabolism in malignant neoplasms. Vopr Onkol 31:25–29

    PubMed  Google Scholar 

  38. Wang J, Zhao H, Xu Z, Cheng X (2020) Zinc dysregulation in cancers and its potential as a therapeutic target. Cancer Biol Med 17(3):612–625. https://doi.org/10.20892/j.issn.2095-3941.2020.0106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang YW, Dai CM, Chen XH, Feng JF (2021) The Relationship between Serum Trace Elements and Oxidative Stress of Patients with Different Types of Cancer. Oxid Med Cell Longev 2021:4846951. https://doi.org/10.1155/2021/4846951

    Article  PubMed  PubMed Central  Google Scholar 

  40. Valko M, Rhodes CJ, Moncol J et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40. https://doi.org/10.1016/j.cbi.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  41. Reszka E, Wasowicz W, Gromadzinska J (2007) Antioxidant defense markers modulated by glutathione S-transferase genetic polymorphism: results of lung cancer case-control study. Genes Nutr 2(3):287–294. https://doi.org/10.1007/s12263-007-0057-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our study was carried out in Trakya University Faculty of Medicine, Department of Biophysics, Department of Medical Oncology and Department of Radiation Oncology.

Funding

This study was supported by the Trakya University Scientific Research Projects Unit (TUBAP) with the project number 2013/14.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Arzu Ay], [Nevra Alkanli], [Tevfik Gulyasar], [Tammam Sipahi], [Irfan Cicin], [Zafer Kocak] and [Necdet Sut]. The first draft of the manuscript was written by [Arzu Ay and Nevra Alkanli] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. The corresponding author attests that all listed authors meet the authorship criteria and that no other authors meeting the criteria have been omitted.

Corresponding authors

Correspondence to Arzu Ay or Nevra Alkanli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For our study, it was applied for Trakya University Faculty of Medicine Non-Invasive Clinical Research Ethics Committee and ethics committee approval was obtained with the protocol code of TÜTF-GOKAEK 2012/198.

Consent for participate

Signed informed consent form was collected from each individual in the patient group with CRC and healthy control group

Consent for publish

Consent for publication is not required as no identifying personal information is published in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ay, A., Gulyasar, T., Alkanli, N. et al. Investigation of the relationship between GSTM1 gene variations and serum trace elements, plasma malondialdehyde levels in patients with colorectal cancer. Mol Biol Rep 48, 6911–6921 (2021). https://doi.org/10.1007/s11033-021-06694-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06694-2

Keywords

Navigation