Skip to main content
Log in

Heat shock proteins with an emphasis on HSP 60

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Heat shock phenomenon is a process by which cells express a set of proteins called heat shock proteins (HSPs) against heat stress. HSPs include several families depending upon the molecular weight of the respective protein. Among the different HSPs, The HSP60 is one of the main components representing the framework of chaperone system. HSP60 plays a myriad number of roles like chaperoning, thermotolerance, apoptosis, cancer, immunology and embryonic development. In this review we discussed briefly the general knowledge and focussed on HSP60 in terms of structure, regulation and function in various physiological and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

None.

References

  1. Feder ME, Hoffman GE (1999) Heat shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  PubMed  Google Scholar 

  2. Milkman R, Hille B (1966) Analysis of some temperature effects on Drosophila pupae. Biol Bull 131:331–345

    Article  Google Scholar 

  3. Tissieres A, Mitchell HJK, Tracy U (1974) Protein synthesis in salivary glands of Drosophila melanogaster, in relation to chromosomal puffs. J Mol Biol 84:389–398

    Article  CAS  PubMed  Google Scholar 

  4. Hemmingsen SM, Woodford C, Vander Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334

    Article  CAS  PubMed  Google Scholar 

  5. Chen B, Feder ME, Kang L (2018) Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol Ecol 27:3040–3054. https://doi.org/10.1111/mec.14769

    Article  PubMed  Google Scholar 

  6. An YJ, Rowland J-H, Na D, Spigolon SK, Hong YJ, Yoon J-H et al (2017) Structural and mechanistic characterization of an archaeal-like chaperonin from a thermophilic bacterium. Nat Commun 8:827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Fan F, Duan F, Yang C, Trexler H, Wang L, Huang Y et al (2020) Deletion of heat shock protein 60 in adult mouse cardiomyocytes perturbs mitochondrial protein homeostasis and causes heart failure. Cell Death Differ 27:587–600. https://doi.org/10.1038/s41418-019-0374-x

    Article  CAS  PubMed  Google Scholar 

  8. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14(1):105–111. https://doi.org/10.1007/s12192-008-0068-7

    Article  CAS  PubMed  Google Scholar 

  9. Hietakangas V, Sistonen L (2005) Regulation of the heat shock response by the heat shock transcription factors. Chaperons Top Curr Genet 15(7):1118–1131

    Google Scholar 

  10. Pelham HRB (1982) A regulatory upstream promoter element in the Drosophila hsp70 heat shock gene. Cell 30:517–528

    Article  CAS  PubMed  Google Scholar 

  11. Amin J, Anathan J, Voellmy R (1988) Key features of heat shock regulatory elements. Mol Cell Biol 8:3761–3769

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Clos J, Westwood JT, Becker PB, Wilson S, Lambert U, Wu C (1990) Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63:1085–1097

    Article  CAS  PubMed  Google Scholar 

  13. Rabindran SK, Giorgi G, Clos J, Wu C (1991) Molecular cloning and expression of a human heat shock factor, HSF1. PNAS 88:6906–6910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sarge KD, Zimarino V, Holm K, Wu C, Morimoto RI (1991) Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA binding ability. Genes Dev 5:1902–1911

    Article  CAS  PubMed  Google Scholar 

  15. Schuetz TJ, Gallo GJ, Sheldon L, Tempst P, Kingston RE (1991) Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. PNAS 88:6911–6915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nakai A, Morimoto RI (1993) Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol Cell Biol 13:1983–1997

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakai A, Tanabe M, Kawazoe Y, Inazawa J, Morimoto RI, Nagata K (1997) HSF4, a new member of the human heat shock family which lacks properties of a transcriptional activator. Mol Cell Biol 17:469–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA, Benjamin IJ (1999) HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 18:5943–5952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ (1998) Targeted disruption of heat shock transcription factor abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273:7523–7528

    Article  CAS  PubMed  Google Scholar 

  20. Nakai A, Kawazoe Y, Tanabe M, Nagata K, Morimoto RI (1995) The DNA-binding properties of two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6. Mol Cell Biol 15:5268–5278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tanabe M, Ishida R, Izuhara F, Komatsuda K, Wakui H, Sawada K et al (2012) The ATPase activity of molecular chaperone HSP60 is inhibited by immunosuppressant mizoribine. Am J Mol Biol 2:93–102. https://doi.org/10.4236/ajmb.2012.22010

    Article  CAS  Google Scholar 

  22. Macario AJL (2007) Molecular chaperones: multiple functions, pathologies, and potential applications. Front Biosci 12:2588–2600

    Article  CAS  PubMed  Google Scholar 

  23. Lupo V, Aguado E, Knecht C, Espinós C (2016) Chaperonopathies: spotlight on hereditary motor neuropathies. Front Mol Biosci 3:81. https://doi.org/10.3389/fmolb.2016.00081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Choi B, Choi C, Park EK, Lee DH, Kang DJ, Lee JY et al (2015) Cytosolic Hsp60 orchestrates the survival and inflammatory responses of vascular smooth muscle cells in injured aortic vessels. Cardiovasc Res 106:498–508. https://doi.org/10.1093/cvr/cvv130

    Article  CAS  PubMed  Google Scholar 

  25. Bross P, Fernandez-Guerra P (2016) Disease-associated mutations in theHSPD1 gene encoding the large subunit of the mitochondrial HSP60/HSP10chaperonin complex. Front Mol Biosci 3:49. https://doi.org/10.3389/fmolb.2016.00049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371:578–586

    Article  CAS  PubMed  Google Scholar 

  27. Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP) 7 chaperonin complex. Nature 388(6644):741–750

    Article  CAS  PubMed  Google Scholar 

  28. Soltys BJ, Gupta RS (1996) Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp Cell Res 222:16–27

    Article  CAS  PubMed  Google Scholar 

  29. Li X, Xu Q, Fu X, Luo W (2014) Heat shock protein 60 overexpression is associated with the progression and prognosis in gastric cancer. PLoS ONE 9:e107507. https://doi.org/10.1371/journal.pone.0107507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hamelin C, Cornut E, Poirier F, Pons S, Beaulieu C, Charrier J-P et al (2011) Identification and verification of heat shock protein 60 as a potential serum marker for colorectal cancer. FEBS J 278:4845–4859. https://doi.org/10.1111/j.1742-4658.2011.08385.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cappello F, Stefano AD, David S, Rappa F, Anzalone R, Rocca GL, D’Anna SE, Magno F, Donner CF, Balbi B, Zummo G (2006) HSP60 AND HSP10 downregulation predicts bronchial epithelial carcinogenesis in smokers with chronic obstructive pulmonary disease. Cancer 107(10):2417–2424

    Article  CAS  PubMed  Google Scholar 

  32. Guo W, Zhu L, Yu M, Zhu R, Chen Q, Wang Q (2018) A five-DNA methylation signature act as a novel prognostic biomarker in patients with ovarian serous cystadenocarcinoma. Clin Epigenet 10:142. https://doi.org/10.1186/s13148-018-0574-0

    Article  CAS  Google Scholar 

  33. Khalil AA, James P (2007) Biomarker discovery: a proteomic approach for brain cancer profiling. Cancer Sci 98:201–213. https://doi.org/10.1111/j.1349-7006.2007.00374.x

    Article  CAS  PubMed  Google Scholar 

  34. Faried A, Sohda M, Nakajima M, Miyazaki T, Kato H, Kuwano H (2004) Expression of heat-shock protein Hsp60 correlated with the apoptotic index and patient prognosis in human oesophageal squamous cell carcinoma. Eur J Cancer 40:2804–2811. https://doi.org/10.1016/j.ejca.2004.08.013

    Article  CAS  PubMed  Google Scholar 

  35. Hayer-Hartl M, Bracher A, Hartl FU (2016) The GroEL–GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem Sci 41:62–76. https://doi.org/10.1016/j.tibs.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  36. Weismann JS, Hohl CM, Kovalenko O, Kashi Y, Chen S, Braig K, Saibil HR, Fenton WA, Norwich AL (1995) Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83:577–587

    Article  Google Scholar 

  37. Mayhew M, da Silva ACR, Martin J, Erdjument-Bromage H, Tempst P, Hartl FU (1996) Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 379:420–426

    Article  CAS  PubMed  Google Scholar 

  38. Burston SG, Ranson NA, Clarke AR (1995) The origins and consequences of asymmetry in the chaperonin reaction cycle. J Mol Biol 249:138–152

    Article  CAS  PubMed  Google Scholar 

  39. Hayer-Hartl MK, Martin J, Hartl FU (1995) Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Science 269:836–841

    Article  CAS  PubMed  Google Scholar 

  40. Nisemblat S, Yaniv A, Parnas F, Frolow F, Azem A (2015) Crystal structure of the human mitochondrial chaperonin symmetrical football complex. Proc Natl Acad Sci USA 112:6044–6049. https://doi.org/10.1073/pnas.1411718112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Enriquez AS, Rojo JM, Bhatt SK, Molugu ZL, Hildenbrand K, Bernal RA (2017) The human mitochondrial Hsp60 in the APO conformation forms a stable tetradecameric complex. Cell Cycle 16:1309–1319. https://doi.org/10.1080/15384101.2017.1321180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jebara F, Weiss C, Azem A (eds) (2017) Hsp60 and Hsp70 chaperones: guardians of mitochondrial proteostasis. In: eLS. Wiley, Hoboken, pp 1–9. https://doi.org/10.1002/9780470015902.a0027152

  43. Bhatt JM, Enriquez J, Wang HM, Rojo SK, Molugu ZL, Hildenbrand R et al (2018) Single-ring intermediates are essential for some chaperonins. Front Mol Biosci 5:42. https://doi.org/10.3389/fmolb.2018.00042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yan X, Shi A, Bracher G, Miličić AK, Singh FU, Hartl P et al (2018) GroEL ring separation and exchange in the chaperonin reaction. Cell 172:605-617.e11. https://doi.org/10.1016/j.cell.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  45. Rye HS, Burston SG, Fenton WA, Beechem JM, Xu Z, Sigler PB, Horwich AL (1997) Distinct actions of cis and trans ATP, within the double ring of the chaperonin GroEL. Lett Nat 388:792–798

    Article  CAS  Google Scholar 

  46. Ryabova NA, Marchenkov VV, Marchenkova SY, Kotova NV, Semisotnov GV (2013) A review: molecular chaperone GroEL/ES: unfolding and refolding processes. Biochem Mosc 78(13):1405–1414

    Article  CAS  Google Scholar 

  47. Boisvert DC, Wang J, Otwinowski Z, Norwich AL, Sigler PB (1996) The 2.4 Å crystal structure of the bacterial chaperonin GroEL complexed with ATPγS. Nat Struct Mol Biol 3:170–177

    Article  CAS  Google Scholar 

  48. Vilasi S, Bulone C, Caruso Bavisotto C, Campanella A, Marino Gammazza PL, San Biagio F et al (2018) Chaperonin of group I: oligomeric spectrum and biochemical and biological implications. Front Mol Biosci 4:99. https://doi.org/10.3389/fmolb.2017.00099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang J, Enriquez J, Li A, Rodriguez B, Holguin D, Von Salzen JM et al (2019) MitCHAP-60 and hereditary spastic paraplegia SPG-13 arise from an inactive Hsp60 chaperonin that fails to fold the ATP synthase b-subunit. Sci Rep 9:12300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gomez-Llorente Y, Jebara M, Patra R, Malik S, Nisemblat O, Chomsky-Hecht A et al (2020) Structural basis for active single and double ring complexes in human mitochondrial Hsp60-Hsp10 chaperonin. Nat Commun 11:1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Neupert W (1997) Protein import into mitochondria. Annu Rev Biochem 66:863–917

    Article  CAS  PubMed  Google Scholar 

  52. Hartl FU (1996) Molecular chaperones in cellular protein folding; a review article. Nature 381:571–580

    Article  CAS  PubMed  Google Scholar 

  53. Hipp MS, Kasturi P, Hartl FU (2019) The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol 20:421–435. https://doi.org/10.1038/s41580-019-0101-y

    Article  CAS  PubMed  Google Scholar 

  54. Henderson B, Fares MA, Lund PA (2013) Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol Rev 88:955–987. https://doi.org/10.1111/brv.12037

    Article  PubMed  Google Scholar 

  55. Mizzen LA, Welch WJ (1988) Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J Cell Biol 106:1105–1116

    Article  CAS  PubMed  Google Scholar 

  56. Ciocca DR, Oesterreich S, Chamness GC, McGuire WL, Fuqua SAW (1993) Biological and clinical implications of heat shock protein 27000 (Hsp27). J Natl Cancer Inst Rev 85:1558–1570

    Article  CAS  Google Scholar 

  57. Cornford PA, Dodson AR, Parsons KF, Desmond AD, Woolfenden PM, Neoptolimos JP, Youqiang K, Foster CS (2000) Heat shock protein expression independently predicts clinical outcome in prostate cancer. Can Res 60:7099–7105

    CAS  Google Scholar 

  58. Blagosklonny MV (2001) Hypoxia-inducible factor: achilles’ heel of antiangiogenic cancer therapy (review). Int J Oncol 19:257–262

    CAS  PubMed  Google Scholar 

  59. Van’t Veer LJ, Dai H, Van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, Van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  Google Scholar 

  60. Van de Vijver MJ, He YD, Van’t Veer LJ, Dai H, Hart AAM, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, Van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. New Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  61. Lin KM, Lin B, Lian IY, Mestril R, Scheffler IE, Dillmann WH (2001) Combined and individual mitochondrial HSP60 and HSP10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia-reoxygenation. Circulation 103:1787–1792

    Article  CAS  PubMed  Google Scholar 

  62. Latchman DS (2001) Heat shock proteins and cardiac protection. Cardiovasc Res 51:637–646

    Article  CAS  PubMed  Google Scholar 

  63. Osterloh A, Frank G, Melane P, Bernhard F, Norbert B, Minka B (2009) Heat shock protein 60 (HSP60) stimulates neutrophil effector functions. J Leukoc Biol 86:423–434

    Article  CAS  PubMed  Google Scholar 

  64. Magen D, Georgopoulos C, Bross P, Ang D, Segev Y, Goldsher D, Nemirovski A, Eli S, Ravid S, Luder A, Hen B, Gershoni-Baruch R, Skorecki K, Mandel H (2008) Mitochondrial Hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet 83:30–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kadhim BS, Mohaymen NA (2011) The role of HSP60 in atherosclerotic coronary heart disease. Fac Med Baghdad 53(3):314–316

    Google Scholar 

  66. Werner A, Meinhardt A, Seitz J, Bergman M (1997) Distribution of heat shock protein immunoreactivity in testis of infertile men. Cell Tissue Res 288:539–544

    Article  CAS  PubMed  Google Scholar 

  67. Meinhardt A, Parvinen M, Bacher M, Aumuller G, Hakovirta H, Yagi A, Sitz J (1995) Expression of mitochondrial heat shock protein 60 in distinct cell types and defined stages of rat seminiferous epithelium. Biol Reprod 52:798–807

    Article  CAS  PubMed  Google Scholar 

  68. Spinaci M, Volpe S, Bernardini C, Ambrogi M, Tamanini C, Seren E, Galeati G (2006) Sperm sorting procedure induces a redistribution of Hsp70 but not Hsp60 and Hsp90 in boar spermatozoa. J Androl 27(6):899–907

    Article  CAS  PubMed  Google Scholar 

  69. Asquith KL, Baleato RM, Mclaughlin EA, Nixon B, Aitken RJ (2004) Tyrosine phosphorylation activities surface chaperones facilitating sperm-zona recognition. J Cell Sci 117:8645–8657

    Article  CAS  Google Scholar 

  70. Boilard M, Reyes-Moreno C, Lachance C, Massicote L, Bailey JL, Sirard MA, Leclerc P (2004) Localization of the chaperone proteins GRP78 and HSP60 on the luminal surface of bovine oviduct epithelial cells and their association with spermatozoa. Biol Reprod 71:1879–1889

    Article  CAS  PubMed  Google Scholar 

  71. Huang S, Eichler G, Bar-Yam Y, Ingber DE (2005) Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett 94(12):128701

    Article  PubMed  CAS  Google Scholar 

  72. Son W, Han C, Hwang S, Lee J, Kim S, Kim YC (2000) Repression of hspA2 messenger RNA in human testes with abnormal spermatogenesis. Fertil Steril 73:1138–1144

    Article  CAS  PubMed  Google Scholar 

  73. Neuer A, Spandorfer SD, Giraldo P, Jeremias J, Dieterle S, Korneev AI, Liu HC, Rosenwacks Z, Witkin S (1999) Heat shock protein expression during gametogenesis and embryogenesis. Infect Dis Obstet Gynecol 7:10–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sirotkin K, Davidson N (1982) Developmentally regulated transcription from Drosophila melanogaster chromosomal site 67B. Dev Biol 89:196–210

    Article  CAS  PubMed  Google Scholar 

  75. Kozlova T, Perezgasga L, Reynaud E, Zurita M (1997) The Drosophila melanogaster homologue of the hsp60 gene is encoded by the essential locus l (1) 10Ac and is differentially expressed during fly development. Dev Genes Evol 207:253–263

    Article  CAS  PubMed  Google Scholar 

  76. Wu JM, Liu TE, Rios Z, Mei QB, Lin XK, Cao SS (2017) Heat shock proteins and cancer. Trends Pharmacol Sci 38(3):226–256

    Article  CAS  PubMed  Google Scholar 

  77. Merendino AM, Bucchieri F, Campanella C et al (2010) Hsp60 is actively secreted by human tumor cells. PLoS ONE 5(2):e9247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: gLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  79. Hwang YJ, Lee SP, Kim SY, Choi YH, Kim MJ, Lee CH et al (2009) Expression of heat shock protein 60 kDa is upregulated in cervical cancer. Yonsei Med J 50:399–406. https://doi.org/10.3349/ymj.2009.50.3.399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hoter S, Rizk HYN (2019) The multiple roles and therapeutic potential of molecular chaperones in prostate cancer. Cancers 11:1194. https://doi.org/10.3390/cancers11081194

    Article  CAS  PubMed Central  Google Scholar 

  81. Guo J, Li X, Zhang W, Chen Y, Zhu S, Chen L et al (2019) HSP60-regulated mitochondrial proteostasis and protein translation promote tumor growth of ovarian cancer. Sci Rep 9:12628. https://doi.org/10.1038/s41598-019-48992-48997

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cappello F, Bellafiore M, Palma A, Marciano V, Martorana G, Belfiore P et al (2002) Expression of 60-kD heat shock protein increases during carcinogenesis in the uterine exocervix. Pathobiology 70:83–88. https://doi.org/10.1159/000067304

    Article  CAS  PubMed  Google Scholar 

  83. Saini J, Sharma PK (2018) Clinical, prognostic and therapeutic significance of heat shock proteins in cancer. Curr Drug Targets 19(13):1478–1490. https://doi.org/10.2174/1389450118666170823121248

    Article  CAS  PubMed  Google Scholar 

  84. Chen Y, Li X, Shao S (2019) The clinical value of HSP60 in digestive system cancers: a systematic review and meta-analysis. Clin Lab 65:523. https://doi.org/10.7754/Clin.Lab.2019.190523

    Article  Google Scholar 

  85. Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, hypoxia and apoptosis. Circulation 106:2727–2733

    Article  CAS  PubMed  Google Scholar 

  86. Noelker C, Morel L, Osterloh A, Alvarez-Fischer D, Lescot T, Breloer M et al (2014) Heat shock protein 60: an endogenous inducer of dopaminergic cell death in Parkinson disease. J Neuroinflammation 11:86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Tsan M-F, Gao B (2014) Cytokine function of heat shock proteins. Am J Physiol Cell Physiol 286(4):739–744. https://doi.org/10.1152/ajpcell.00364.2003

    Article  Google Scholar 

  88. Alard JE, Dueymes M, Youinou P, Jamin C (2007) Modulation of endothelial cell damages by anti-Hsp60 autoantibodies in systemic autoimmune diseases. Autoimmun Rev 6:438–443

    Article  CAS  PubMed  Google Scholar 

  89. Vabulas RM et al (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276(33):31332–31339

    Article  CAS  PubMed  Google Scholar 

  90. Lehnardt S et al (2008) Avicious cycle involving release of heat shock protein60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. J Neurosci 28(10):2320–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cappello F, Marino Gammazza A, Palumbo Piccionello A, Campanella C, Pace A, Conway de Macario E, Macario AJL (2014) Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opin Ther Targets 18(2):185–208. https://doi.org/10.1517/14728222.2014.856417

    Article  CAS  PubMed  Google Scholar 

  92. Flohe S et al (2003) Human heat shock protein 60 induces maturation of dendritic cells versus aTh1-promoting phenotype. J Immunol 170(5):2340–2348

    Article  CAS  PubMed  Google Scholar 

  93. Meng Q, Li BX, Xiao X (2018) Toward developing chemical modulators of Hsp60 as potential therapeutics. Front Mol Biosci 5(April):35. https://doi.org/10.3389/fmolb.2018.00035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nussbaum G et al (2006) Peptidep277 of HSP60 signals T cells: inhibition of inflammatory chemotaxis. Int Immunol 18:1413–1419

    Article  CAS  PubMed  Google Scholar 

  95. Weiss C, Jebara F, Nisemblat S, Azem A (2016) Dynamic complexes in the chaperonin-mediated protein folding cycle. Front Mol Biosci 3:80. https://doi.org/10.3389/fmolb.2016.00080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zanin-Zhorov A et al (2005) Heat shock protein 60 activates cytokine-associated negative regulator suppressor of cytokine signaling 3 in T cells: effects on signaling, chemotaxis, and inflammation. J Immunol 175:276–285

    Article  CAS  PubMed  Google Scholar 

  97. Abdeen S, Salim N, Mammadova N, Summers CM, Frankson R, Ambrose AJ et al (2016) GroEL/ES inhibitors as potential antibiotics. Bioorg Med Chem Lett 26:3127–3134. https://doi.org/10.1016/j.bmcl.2016.04.089

    Article  CAS  PubMed  Google Scholar 

  98. Zanin-Zhorov A et al (2005) Heatshockprotein60inhibitsTh1-mediatedhepatitismodelviainnateregulationofTh1/Th2 transcription factors and cytokines. J Immunol 174:3227–3236

    Article  CAS  PubMed  Google Scholar 

  99. Abdeen S, Salim N, Mammadova N, Summers CM, Goldsmith-Pestana K, McMahon-Pratt D et al (2016) Targeting the HSP60/10 chaperonin systems of Trypanosoma brucei as a strategy for treating African sleeping sickness. Bioorg Med Chem Lett 26:5247–5253. https://doi.org/10.1016/j.bmcl.2016.09.051

    Article  CAS  PubMed  Google Scholar 

  100. Zanin-Zhorov A et al (2006) Heat shock protein 60 enhances CD4+ CD25+ regulatory T cell function via innate TLR2 signaling. J Clin Invest 116:2022–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Quintana FJ et al (2003) DNA fragments of the human 60-kDa heat shock protein (HSP60) vaccinate against adjuvant arthritis: identification of a regulatory HSP60 peptide. J Immunol 171:3533–3541

    Article  CAS  PubMed  Google Scholar 

  102. Cohen-Sfady M et al (2005) Heat shock protein 60 activates B cells via the TLR4-My D88 pathway. J Immunol 175:3594–3602

    Article  CAS  PubMed  Google Scholar 

  103. Cohen-Sfady M et al (2009) Heat shock protein 60, via MyD88 innate signaling, protects B cells from apoptosis, spontaneous and induced. J Immunol 183:890–896

    Article  CAS  PubMed  Google Scholar 

  104. Yuan J, Dunn P, Martinus RD (2011) Detection of Hsp60 in saliva and serum from type 2 diabetic and non-diabetic control subjects. Cell Stress Chaperones 16(6):689–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nakhjavani M, Morteza A, Khajeali L, Esteghamati A, Khalilzadeh O, Asgarani F, Outeiro TF (2010) Increased serum HSP70 levels are associated with the duration of diabetes. Cell Stress Chaperones 15:959–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hall L, Martinus RD (2013) Hyperglycaemia and oxidative stress upregulate HSP60 & HSP70 expression in HeLa cells. Springerplus 2:431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh—India and Central University of Kashmir, Jammu and Kashmir—India. The author Rafiq Lone also acknowledged the Grant (PDF/2017/003066) in the form of NPDF, SERB, DST-GOI.

Funding

No funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

JAM and RL have contributed equally in preparation of manuscript and have read manuscript before publication.

Corresponding author

Correspondence to Rafiq Lone.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical approval

No need of this as this is review work.

Consent to participate

Both authors agreed.

Consent to publish

We agreed both to give consent of publishing to the publisher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, J.A., Lone, R. Heat shock proteins with an emphasis on HSP 60. Mol Biol Rep 48, 6959–6969 (2021). https://doi.org/10.1007/s11033-021-06676-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06676-4

Keywords

Navigation