Skip to main content
Log in

Intein-Mediated Protein trans-Splicing of the Recombinant Streptavidin on Magnetosomes

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

When expressing streptavidin recombinant polypeptide on magnetosomes (called bacterial magnetic nanoparticles, or BMPs), the presence of endogenous bacterial biotin might be detrimental. In the study, the streptavidin monomer fragment (SA1–116) was fused with the intein N-terminal (termed precursor SA1–116-IN), and SA1–116-IN was expressed in E. coli (BL21). Meanwhile, the SA117–160 fragment was fused with the C-terminal intein, and then this chimeric polypeptide was expressed on magnetosomes by fusion with magnetosome membrance protein MamF. In the in vitro protein splicing system, the purified engineered magnetosomes (BMP-SA117–160-IC) and the SA1–116-IN precursor were mixed. Intein-mediated trans-splicing reaction was induced to produce the functional magnetic beads BMP-SA. Our results indicate that intein-mediated protein trans-splicing may lead to efficient synthesis of the recombinant streptavidin on the magnetosomes, showing its promising potential to produce other functional magnetic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Uebe R., Schuler D. 2016. Magnetosome biogenesis in magnetotactic bacteria. Nat. Rev. Microbiol. 14, 621–637.

    Article  CAS  Google Scholar 

  2. Bazylinski D.A., Frankel R.B. 2004. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2, 217–230.

    Article  CAS  Google Scholar 

  3. Grunberg K., Muller E.C., Otto A., Reszka R., Linder D., Kube M., Reinhardt R., Schuler D. 2004. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 70, 1040–1050.

    Article  Google Scholar 

  4. Greene S.E., Komeili A. 2012. Biogenesis and subcellular organization of the magnetosome organelles of magnetotactic bacteria. Curr. Opin. Cell Biol. 24, 490–495.

    Article  CAS  Google Scholar 

  5. Yan L., Da H., Zhang S., Lopez V.M., Wang W. 2017. Bacterial magnetosome and its potential application. Microbiol. Res. 203, 19–28.

    Article  CAS  Google Scholar 

  6. Xu J., Liu L., He J., Ma S., Li S., Wang Z., Xu T., Jiang W., Wen Y., Li Y., Tian J., Li F. 2019. Engineered magnetosomes fused to functional molecule (protein A) provide a highly effective alternative to commercial immunomagnetic beads. J. Nanobiotechnol. 17, 37.

    Article  Google Scholar 

  7. Pollithy A., Romer T., Lang C., Muller F.D., Helma J., Leonhardt H., Rothbauer U., Schuler D. 2011. Magnetosome expression of functional camelid antibody fragments (nanobodies) in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 77, 6165–6171.

    Article  CAS  Google Scholar 

  8. Wu W., Wu Z., Yu T., Jiang C., Kim W.S. 2015. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16, 023501.

    Article  Google Scholar 

  9. Li A., Zhang H., Zhang X., Wang Q., Tian J., Li Y., Li J. 2010. Rapid separation and immunoassay for low levels of Salmonella in foods using magnetosome-antibody complex and real-time fluorescence quantitative PCR. J. Sep. Sci. 33, 3437–3443.

    Article  CAS  Google Scholar 

  10. Xu J., Hu J., Liu L., Li L., Wang X., Zhang H., Jiang W., Tian J., Li Y., Li J. 2014. Surface expression of protein A on magnetosomes and capture of pathogenic bacteria by magnetosome/antibody complexes. Front. Microbiol. 5, 136.

    Article  Google Scholar 

  11. Ali I., Peng C., Khan Z.M., Naz I. 2017. Yield cultivation of magnetotactic bacteria and magnetosomes: A review. J. Basic Microbiol. 57, 643–652.

    Article  CAS  Google Scholar 

  12. Tanaka T., Matsunaga T. 2000. Fully automated chemiluminescence immunoassay of insulin using antibody-protein A-bacterial magnetic particle complexes. Anal. Chem. 72, 3518–3522.

    Article  CAS  Google Scholar 

  13. Jacob J.J., Suthindhiran K. 2016. Magnetotactic bacteria and magnetosomes: Scope and challenges. Mater. Sci. Eng. C Mater. Biol. Appl. 68, 919–928.

    Article  CAS  Google Scholar 

  14. Lim K.H., Huang H., Pralle A., Park S. 2013. Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection. Biotechnol. Bioeng. 110, 57–67.

    Article  CAS  Google Scholar 

  15. Dundas C.M., Demonte D., Park S. 2013. Streptavidin–biotin technology: Improvements and innovations in chemical and biological applications. Appl. Microbiol. Biotechnol. 97, 9343–9353.

    Article  CAS  Google Scholar 

  16. Liu J., Ding Y., Jiang W., Tian J., Li Y., Li J. 2008. A mutation upstream of an ATPase gene significantly increases magnetosome production in Magnetospirillum gryphiswaldense. Appl. Microbiol. Biotechnol. 81, 551–558.

    Article  CAS  Google Scholar 

  17. Zhang Y., Zhang X., Jiang W., Li Y., Li J. 2011. Semicontinuous culture of Magnetospirillum gryphiswaldense MSR-1 cells in an autofermentor by nutrient-balanced and isosmotic feeding strategies. Appl. Environ. Microbiol. 77, 5851–5856.

    Article  CAS  Google Scholar 

  18. Yang C., Takeyama H., Matsunaga T. 2001. Iron feeding optimization and plasmid stability in production of recombinant bacterial magnetic particles by Magnetospirillum magneticum AMB-1 in fed-batch culture. J. Biosci. Bioeng. 91, 213–216.

    Article  CAS  Google Scholar 

  19. Liu X.Q., Hu Z. 1997. Identification and characterization of a cyanobacterial DnaX intein. FEBS Lett. 408, 311–314.

    Article  CAS  Google Scholar 

  20. Zhang X., Liu X.Q., Meng Q. 2019. Engineered Ssp DnaX inteins for protein splicing with flanking proline residues. Saudi J. Biol Sci. 26, 854–859.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Jiangsu Province (Grant no. BK20180224), Science and Education Programs of Suzhou Commission of Health (KJXW2017056) and the Research Fund of Jihua Laboratory (grant no. X190171TD190) and Scientific Research Instrument and Equipment Development Project of Chinese Academy of Sciences (grant no. YJKYYQ20200037).

Author information

Authors and Affiliations

Authors

Contributions

S.B. Duan and S.S. Wei contributed equally to this study work.

Corresponding authors

Correspondence to J. Chen or Q. L. Meng.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare no conflict of interest. This article does not contain any research involving humans or animals as subjects of research.

ADDITIONAL INFORMATION

The text was submitted by the author(s) in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, S.B., Wei, S.S., Wang, H.M. et al. Intein-Mediated Protein trans-Splicing of the Recombinant Streptavidin on Magnetosomes. Mol Biol 55, 884–888 (2021). https://doi.org/10.1134/S0026893321050058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321050058

Keywords:

Navigation