Skip to main content

Advertisement

Log in

Visual detection of fluoride based on supramolecular aggregates of perylene diimide in 100% aqueous media

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A water-soluble perylene imide derivative (PDI-Glu) was synthesized and their supramolecular aggregates composed of PDI-Glu and Al3+ were prepared as a “turn on” fluorometric probe to monitor F in a purely aqueous system. Based on an “indicator displacement assay” (IDA) approach, the sensing performance and mechanism of PDI-Glu/Al3+ complex toward F were investigated by absorption and emission spectra. It was suggested that disassembly of PDI-Glu/Al3+ aggregates was promoted by addition of F through the competitive binding between Al3+ and F. The detection limit is 240 nmol/L. This method featured simple preparation, excellent water solubility, adjustable self-assembly performance, ease of observation and operation, and high selectivity and sensitivity. It was used for monitoring F in toothpaste and tap water samples with excellent accuracy and recovery. To the best of our knowledge, this is the first water-soluble perylene diimide-based probe for F detection in 100% aqueous media. We believe this work could not only extend the sensing scope of water-soluble perylene diimide, but also bring some useful information for the rapid detection of anionic analytes  in aqueous media.

Graphical abstract

The disassembly of supramolecular aggregates of PDI-Glu/Al3+ along with significant fluorescence recovery enable a rapid and visual detection of F based on an “indicator displacement assay” strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Matsui H, Morimoto M, Horimoto K, Nishimura Y (2007) Some characteristics of fluoride-induced cell death in rat thymocytes: cytotoxicity of sodium fluoride. Toxicol in Vitro 21(6):1113–1120. https://doi.org/10.1016/j.tiv.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  2. Newbrun E (2010) What we know and do not know about fluoride. J Public Health Dent 70(3):227–233. https://doi.org/10.1111/j.1752-7325.2010.00171.x

    Article  PubMed  Google Scholar 

  3. Arhima MH, Gulati OP, Sharma SC (2004) The effect of pycnogenol on fluoride induced rat kidney lysosomal damage in vitro. Phytother Res 18(3):244–246. https://doi.org/10.1002/ptr.1395

    Article  CAS  PubMed  Google Scholar 

  4. Sarkar D, Ghosh P, Gharami S, Mondal TK, Murmu N (2017) A novel coumarin based molecular switch for the sequential detection of Al3+ and F: application in lung cancer live cell imaging and construction of logic gate. Sensor Actuat B-Chem 242:338–346. https://doi.org/10.1016/j.snb.2016.11.059

    Article  CAS  Google Scholar 

  5. Capka V, Bowers CP, Narvesen JN, Rossi RE (2004) Determination of total fluorine in blood at trace concentration levels by the Wickbold decomposition method with direct potentiometric detection. Talanta 64(4):869–878. https://doi.org/10.1016/j.talanta.2004.03.066

    Article  CAS  PubMed  Google Scholar 

  6. Musijowski J, Szostek B, Koc M, Trojanowicz M (2010) Determination of fluoride as fluorosilane derivative using reversed-phase HPLC with UV detection for determination of total organic fluorine. J Sep Sci 33(17–18):2636–2644. https://doi.org/10.1002/jssc.201000179

    Article  CAS  PubMed  Google Scholar 

  7. Hu KK, Huang WX, Su YH, Hu RZ (2009) Simultaneous determination of fluorine and iodine in urine by ion chromatography with electrochemical pretreatment. Chinese Chem Lett 20(12):1483–1486. https://doi.org/10.1016/j.cclet.2009.05.030

    Article  CAS  Google Scholar 

  8. Li X, Zhang M, Wang Y, Wang X, Ma H, Li P, Song W, Han XX, Zhao B (2018) Direct detection of fluoride ions in aquatic samples surface-enhanced by Raman scattering. Talanta 178:9–14. https://doi.org/10.1016/j.talanta.2017.08.101

    Article  CAS  PubMed  Google Scholar 

  9. Hu JY, Liu R, Zhu XL, Cai X, Zhu HJ (2015) A highly efficient and selective probe for F detection based on 1H-imidazo[4,5-b]phenazine derivative. Chinese Chem Lett 26(3):339–342. https://doi.org/10.1016/j.cclet.2014.10.028

    Article  CAS  Google Scholar 

  10. Zhou Y, Zhang JF, Yoon J (2014) Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chem Rev 114(10):5511–5571. https://doi.org/10.1021/cr400352m

    Article  CAS  PubMed  Google Scholar 

  11. Krishnaveni K, Iniya M, Siva A, Vidhyalakshmi N, Sasikumar S, Ramesh UKP, Murugesan S (2020) Naphthyl hydrazone anchored with nitrosalicyl moiety as fluorogenic and chromogenic receptor for heavy metals (Ag+, Hg2+) and biologically important F ion and its live cell imaging applications in HeLa cells and zebrafish embryos. J Mol Struct 1217:128446. https://doi.org/10.1016/j.molstruc.2020.128446

    Article  CAS  Google Scholar 

  12. Lin YC, Chen CT (2009) Acridinium salt-based fluoride and acetate chromofluorescent probes: molecular insights into anion selectivity switching. Org Lett 11(21):4858–4861. https://doi.org/10.1021/ol901935g

    Article  CAS  PubMed  Google Scholar 

  13. Guo Y, Li J, Chai S, Yao J (2017) Nanomaterials for the optical detection of fluoride. Nanoscale 9(45):17667–17680. https://doi.org/10.1039/C7NR05981G

    Article  CAS  PubMed  Google Scholar 

  14. Jiang Y, Shao H, Xu H, Yang J, Wang Y, Xiong H, Wang P, Wang X (2021) Ultrafast synthesis of near-infrared-emitting aqueous CdTe/CdS quantum dots with high fluorescence. Mater Today Chem 20:100447. https://doi.org/10.1016/j.mtchem.2021.100447

    Article  CAS  Google Scholar 

  15. Furuta H, Maeda H, Osuka A (2001) Oxyindolophyrin: a novel fluoride receptor derived from n-confused corrole isomer. J Am Chem Soc 123(26):6435–6436. https://doi.org/10.1021/ja015892x

    Article  CAS  PubMed  Google Scholar 

  16. Huang C, Barlow S, Marder SR (2011) Perylene-3,4,9,10-tetracarboxylic acid diimides: synthesis, physical properties, and use in organic electronics. J Org Chem 76(8):2386–2407. https://doi.org/10.1021/jo2001963

    Article  CAS  PubMed  Google Scholar 

  17. Cespedes-Guirao FJ, Garcia-Santamaria S, Fernandez-Lazaro F, Sastre-Santos A, Bolink HJ (2009) Efficient electroluminescence from a perylenediimide fluorophore obtained from a simple solution processed OLED. J Phys D Appl Phys 42:105106. https://doi.org/10.1088/0022-3727/42/10/105106

    Article  CAS  Google Scholar 

  18. Wagner C, Wagenknecht HA (2006) Perylene-3,4:9,10-tetracarboxylic acid bisimide dye as an artificial DNA base surrogate. Org Lett 8(19):4191–4194. https://doi.org/10.1021/ol061246x

    Article  CAS  PubMed  Google Scholar 

  19. Chen X, Jou MJ, Yoon J (2009) An “off-on” type UTP/UDP selective fluorescent probe and its application to monitor glycosylation process. Org Lett 11(10):2181–2184. https://doi.org/10.1021/ol9004849

    Article  CAS  PubMed  Google Scholar 

  20. Han A, Liu X, Prestwich GD, Zang L (2014) Fluorescent sensor for Hg2+ detection in aqueous solution. Sensor Actuat B-Chem 198:274–277. https://doi.org/10.1016/j.snb.2014.03.033

    Article  CAS  Google Scholar 

  21. Gao T, Zhou WF, Zhao Y, Shen L, Chang WY, Musendo RK, Chen EQ, Song YL, Ren XK (2019) Polyhedral oligosilsesquioxane tethered perylene diimide for application in optical limiting and rapid detection of fluoride ions. Chem Commun 55(20):3012–3014. https://doi.org/10.1039/c8cc09725a

    Article  CAS  Google Scholar 

  22. Du F, Bao Y, Liu B, Tian J, Li Q, Bai R (2013) POSS-containing red fluorescent nanoparticles for rapid detection of aqueous fluoride ions. Chem Commun 49(41):4631–4633. https://doi.org/10.1039/c3cc40810h

    Article  CAS  Google Scholar 

  23. Siegel JS (1996) Supramolecular chemistry. Concepts and perspectives-Lehn,JM . Science 271:949–949. https://doi.org/10.1126/science.271.5251.949

  24. Lohani CR, Kim JM, Lee KH (2009) Facile synthesis of anthracene-appended amino acids as highly selective and sensitive fluorescent Fe3+ ion sensors. Bioorg Med Chem Lett 19(21):6069–6073. https://doi.org/10.1016/j.bmcl.2009.09.036

    Article  CAS  PubMed  Google Scholar 

  25. Zhang L, Zhao Y, Wu Y, Jiang Y, Wang Q, Lin X, Song G, Huang K, Yao Z (2020) An efficient approach for rapid detection of polymyxins B based on the optically active supramolecular aggregates of water-soluble perylene diimide. Sensor Actuat B-Chem 321:128594. https://doi.org/10.1016/j.snb.2020.128594

    Article  CAS  Google Scholar 

  26. Purkait R, Patra C, Mahapatra AD, Chattopadhyay D, Sinha C (2018) A visible light excitable chromone appended hydrazide chemosensor for sequential sensing of Al3+ and F in aqueous medium and in Vero cells. Sensor Actuat B-Chem 257:545–552. https://doi.org/10.1016/j.snb.2017.10.168

    Article  CAS  Google Scholar 

  27. Cheng H, Zhao Y, Xu H, Hu Y, Zhang L, Song G, Yao Z (2020) Rapid and visual detection of protamine based on ionic self-assembly of a water soluble perylene diimide derivative. Dyes Pigments 180:108456. https://doi.org/10.1016/j.dyepig.2020.108456

    Article  CAS  Google Scholar 

  28. Wang W, Han JJ, Wang LQ, Li LS, Shaw WJ, Li ADQ (2003) Dynamic π-π stacked molecular assemblies emit from green to red colors. Nano Lett 3(4):455–458. https://doi.org/10.1021/nl025976j

    Article  CAS  Google Scholar 

  29. Ma T, Li C, Shi G (2008) Optically active supramolecular complex formed by ionic self-assembly of cationic perylenediimide derivative and adenosine triphosphate. Langmuir 24(1):43–48. https://doi.org/10.1021/la702559m

    Article  CAS  PubMed  Google Scholar 

  30. Wang B, Yu C (2010) Fluorescence turn-on detection of a protein through the reduced aggregation of a perylene probe. Angew Chem Int Edit 49(8):1485–1488. https://doi.org/10.1002/ange.200905237

    Article  CAS  Google Scholar 

  31. Rehm S, Stepanenko V, Zhang X, Rehm TH, Wuerthner F (2010) Spermine-functionalized perylene bisimide dyes-highly fluorescent bola-amphiphiles in water. Chem-Eur J 16(11):3372–3382. https://doi.org/10.1002/chem.200902839

    Article  CAS  PubMed  Google Scholar 

  32. Shen Y, Liu S, Kong L, Li D, He Y (2013) Sensitive detection of polymyxin B sulfate at the nanogram level using enhanced resonance scattering signals and decreased fluorescence signals with thioglycolic acid capped CdTe/CdS quantum dots as probe. Sensor Actuat B-Chem 188:555–563. https://doi.org/10.1016/j.snb.2013.07.070

    Article  CAS  Google Scholar 

  33. Liu F, Fan C, Tu Y, Pu S (2018) A new fluorescent and colorimetric chemosensor for Al3+ and F/CN based on a julolidine unit and its bioimaging in living cells. RSC Adv 83(54):1113–31120. https://doi.org/10.1039/c8ra05439h

    Article  CAS  Google Scholar 

  34. Rochat S, Severin K (2011) A simple fluorescence assay for the detection of fluoride in water at neutral pH. Chem Commun 47(15):4391–4393. https://doi.org/10.1039/c1cc10498e

    Article  CAS  Google Scholar 

Download references

Availability of data and material

Not applicable.

Code availability

Not applicable.

Funding

Z. Y. Yao received funding from the National Key Research and Development Program of China (Grant 2019YFC1606303), the National Natural Science Foundation of China (Grant 31871877), and the Research Fund Program of Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources (Grant 2017B030314182).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Zhiyi Yao.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1.67 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Zhang, H., Shen, Y. et al. Visual detection of fluoride based on supramolecular aggregates of perylene diimide in 100% aqueous media. Microchim Acta 188, 331 (2021). https://doi.org/10.1007/s00604-021-04990-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04990-z

Keywords

Navigation