Skip to main content

Advertisement

Log in

Colorimetric cellulose-based test-strip for rapid detection of amyloid β-42

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An innovative sensing assay is described for point-of-care (PoC) quantification of a biomarker of Alzheimer’s disease, amyloid β-42 (Aβ-42). This device is based on a cellulose paper-dye test strip platform in which the corresponding detection layer is integrated by applying a molecularly imprinted polymer (MIP) to the cellulose paper surface. Briefly, the cellulose paper is chemically modified with a silane to subsequently apply the MIP detection layer. The imprinting process is confirmed by the parallel preparation of a control material, namely a non-imprinted polymer (NIP). The chemical changes of the surface were evaluated by Fourier transform infrared spectroscopy (FTIR), contact angle, and thermogravimetric analysis (TG). Proteins and peptides can be quantified by conventional staining methods. For this purpose, Coomassie blue (CB) was used as a staining dye for the detection and quantification of Aβ-42. Quantitative determination is made possible by taking a photograph and applying an appropriate mathematical treatment to the color coordinates provided by the ImageJ program. The MIP shows a linear range between 1.0 ng/mL and 10 μg/mL and a detection limit of 0.71 ng/mL. Overall, this cellulose-based assay is suitable for the detection of peptides or proteins in a sample by visual comparison of color change. The test strip provides a simple, instrument-free, and cost-effective method with high chemical stability, capable of detecting very small amounts of peptides or proteins in a sample, and can be used for the detection of any (bio)molecule of interest.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mascini M, Tombelli S (2008) Biosensors for biomarkers in medical diagnostics. Biomarkers. 13(7–8):637–657. https://doi.org/10.1080/13547500802645905

    Article  CAS  PubMed  Google Scholar 

  2. Luo Y, Zhang B, Chen M, Jiang T, Zhou D, Huang J, Fu W (2012) Sensitive and rapid quantification of C-reactive protein using quantum dot-labeled microplate immunoassay. J Transl Med 10:10. https://doi.org/10.1186/1479-5876-10-24

    Article  CAS  Google Scholar 

  3. Kuntaruk S, Tatu T, Keowkarnkah T, Kasinrerk W (2010) Sandwich ELISA for hemoglobin A(2) quantification and identification of beta-thalassemia carriers nt. J Hematol 91(2):219–228. https://doi.org/10.1007/s12185-009-0490-3

    Article  CAS  Google Scholar 

  4. Clarke NJ, Tomlinson AJ, Ohyagi Y, Younkin S, Naylor S (1998) Detection and quantitation of cellularly derived amyloid beta peptides by immunoprecipitation-HPLC-MS. FEBS Lett 430(3):419–423. https://doi.org/10.1016/s0014-5793(98)00706-6

    Article  CAS  PubMed  Google Scholar 

  5. Schuder S, Wittenberg JB, Haseltine B, Wittenberg BA (1979) Spectrophotometric determination of myoglobin in cardiac and skeletal-muscle - separation from hemoglobin by subunit-exchange chromatography. Anal Biochem 192(2):473–481. https://doi.org/10.1016/0003-2697(79)90687-0

    Article  Google Scholar 

  6. Loo L, Wu W, Shih WY, Shih W-H, Borghaei H, Pourrezaei K, Adams GP (2011) A rapid method to regenerate piezoelectric microcantilever sensors (PEMS). Sensors 11(5):5520–5528. https://doi.org/10.3390/s110505520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ma L, Wang C, Zhang M (2011) Detecting protein adsorption and binding using magnetic nanoparticle probes. Sensor Actuat B-Chem 160(1). https://doi.org/10.1016/j.snb.2011.08.043

  8. Mohammed M-I, Desmulliez MPY (2011) Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: a review. Lab Chip 11(4):569–595. https://doi.org/10.1039/c0lc00204f

    Article  CAS  PubMed  Google Scholar 

  9. Sanchez-Portillo P, Hernandez-Sirio A, Godoy-Alcantar C, Lacroix PG, Agarwal V, Santillan R et al (2021) Colorimetric metal ion (II) sensors based on imine boronic esters functionalized with pyridine. Dyes Pigm 108991. https://doi.org/10.1016/j.dyepig.2020.108991

  10. Kang BH, Park M, Jeong KH (2017) Colorimetric Schirmer strip for tear glucose detection. Biochip J 11(4):294–299. https://doi.org/10.1007/s13206-017-1405-7

    Article  CAS  Google Scholar 

  11. Kudo H, Maejima K, Hiruta Y, Citterio D (2020) Microfluidic paper-based analytical devices for colorimetric detection of lactoferrin. Slas Technology 25(1):47–57. https://doi.org/10.1177/2472630319884031

    Article  CAS  PubMed  Google Scholar 

  12. Zeng L, Liu LQ, Kuang H, Cui G, Xu CL (2019) A paper-based colorimetric assay for rapid detection of four macrolides in milk. Mat Chem Front 3(10):2175–2183. https://doi.org/10.1039/c9qm00429g

    Article  CAS  Google Scholar 

  13. Carrell C, Kava A, Nguyen M, Menger R, Munshi Z, Call Z, Nussbaum M, Henry C (2019) Beyond the lateral flow assay: a review of paper-based microfluidics. Microelectron Eng 206:45–54. https://doi.org/10.1016/j.mee.2018.12.002

    Article  CAS  Google Scholar 

  14. Bushman ET, Jauk VC, Szychowski JM, Mazzoni S, Tita AT, Harper LM (2020) Utility of routine dipstick urinalysis for glucose screening as a predictor for gestational diabetes. Amer J Obst Gynec 222(1):S161–S1S2. https://doi.org/10.1016/j.ajog.2019.11.248

    Article  Google Scholar 

  15. Hu J, Wang SQ, Wang L, Li F, Pingguan-Murphy B, Lu TJ, Xu F (2014) Advances in paper-based point-of-care diagnostics. Biosens Bioelectron 54:585–597. https://doi.org/10.1016/j.bios.2013.10.075

    Article  CAS  PubMed  Google Scholar 

  16. Albareda-Sirvent M, Merkoci A, Alegret S (2000) Configurations used in the design of screen-printed enzymatic biosensors. A review. Sensors Actuat B-Chem 269(1–2):153–163. https://doi.org/10.1016/s0925-4005(00)00536-0

    Article  Google Scholar 

  17. Chen Z, Xi F, Yang S, Wu Q, Lin X (2008) Development of a bienzyme system based on sugar-lectin biospecific interactions for amperometric determination of phenols and aromatic amines. Sensors Actuat B-Chem 130(2):900–907. https://doi.org/10.1016/j.snb.2007.10.075

    Article  CAS  Google Scholar 

  18. Cai H, Wang YQ, He PG, Fang YH (2002) Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Anal Chim Acta 469(2):165–172. https://doi.org/10.1016/s0003-2670(02)00670-0

    Article  CAS  Google Scholar 

  19. Chang Z, Pan H, Zhao K, Chen M, He P, Fang Y (2008) Electrochemical DNA biosensors based on palladium nanoparticles combined with carbon nanotubes. Electroanalysis 20(2):131–136. https://doi.org/10.1002/elan.200704023

    Article  CAS  Google Scholar 

  20. Moreira FTC, Sharma S, Dutra RAF, Noronha JPC, Cass AEG, Sales MGF (2013) Smart plastic antibody material (SPAM) tailored on disposable screen printed electrodes for protein recognition: application to myoglobin detection. Biosens Bioelectron 45:237–244. https://doi.org/10.1016/j.bios.2013.02.012

    Article  CAS  PubMed  Google Scholar 

  21. Chen L, Wang X, Lu W, Wu X, Li J (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45(8):2137–2211

    Article  CAS  Google Scholar 

  22. Guan GJ, Liu BH, Wang ZY, Zhang ZP (2008) Imprinting of molecular recognition sites on nanostructures and its applications in chemosensors. Sensors. 8(12):8291–8320. https://doi.org/10.3390/s8128291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee GH, Hah SS (2012) Coomassie blue is sufficient for specific protein detection of aptamer-conjugated chips. Chemistry Letters is Bioorganic Med 22(4):1520–1522. https://doi.org/10.1016/j.bmcl.2012.01.012

    Article  CAS  Google Scholar 

  24. Eynard L, Lauriere M (1998) The combination of Indian ink staining with immunochemiluminescence detection allows precise identification of antigens on blots: application to the study of glycosylated barley storage proteins. Electrophoresis. 19(8–9):1394–1396. https://doi.org/10.1002/elps.1150190833

    Article  CAS  PubMed  Google Scholar 

  25. Mitra P, Pal AK, Basu D, Hati RN (1994) A staining procedure using coomassie brilliant blue g-250 in phosphoric-acid for detection of protein bands with high-resolution in polyacrylamide-gel and nitrocellulose membrane. Anal Biochem 223(2):327–329. https://doi.org/10.1006/abio.1994.1594

    Article  CAS  PubMed  Google Scholar 

  26. Simpson RJ. Rapid coomassie blue staining of protein gels. (2010) Cold Spring Harb prot (4):pdb.prot5413-pdb.prot. doi: https://doi.org/10.1101/pdb.prot5413

  27. Castellanos-Serra LR, Hardy E, Proenza W, Huerta V, Gonzalez LJ, Le-Caer JP et al (2000) Reversible negative staining of protein on electrophoresis gels by imidazole-zinc salts: micropreparative applications to proteome analysis by mass spectrometry. Prot Protein Anal:29–52. https://doi.org/10.1007/978-3-642-59631-5_3

  28. Chevallet M, Luche S, Rabilloud T (2006) Silver staining of proteins in polyacrylamide gels. Nat Prot 1(4):1852–1858. https://doi.org/10.1038/nprot.2006.288

    Article  CAS  Google Scholar 

  29. Derayea SM, Nagy DM (2018) Application of a xanthene dye, eosin Y, as spectroscopic probe in chemical and pharmaceutical analysis; a review. Rev Anal Chem 37(3). https://doi.org/10.1515/revac-2017-0020

  30. Pereira MV, Marques AC, Oliveira D, Martins R, Moreira FTC, Sales MGF, Fortunato E (2020) Paper-based platform with an in situ molecularly imprinted polymer for beta-amyloid. Acs Omega 5(21):12057–12066. https://doi.org/10.1021/acsomega.0c00062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moreira FTC, Sales MGF (2017) Smart naturally plastic antibody based on poly(alpha-cyclodextrin) polymer for beta-amyloid-42 soluble oligomer detection. Sensors Actuat B-Chem 240:229–238. https://doi.org/10.1016/j.snb.2016.08.150

    Article  CAS  Google Scholar 

  32. Bonini F, Piletsky S, Turner APF, Speghini A, Bossi A (2007) Surface imprinted beads for the recognition of human serum albumin. Biosens Bioelectron 22(9–10):2322–2328. https://doi.org/10.1016/j.bios.2006.12.034

    Article  CAS  PubMed  Google Scholar 

  33. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37(5):790–802. https://doi.org/10.2144/04375RV01

    Article  CAS  PubMed  Google Scholar 

  34. Hossain MM, Trinh QH, Nguyen DB, Sudhakaran MSP, Mok YS (2019) Robust hydrophobic coating on glass surface by an atmospheric-pressure plasma jet for plasma-polymerisation of hexamethyldisiloxane conjugated with (3-aminopropyl) triethoxysilane. Surf Eng 35(5):466–475. https://doi.org/10.1080/02670844.2018.1524037

    Article  CAS  Google Scholar 

  35. Yin YY, Ma JJ, Tian XZ, Jiang X, Wang HB, Gao WD (2018) Cellulose nanocrystals functionalized with amino-silane and epoxy-poly(ethylene glycol) for reinforcement and flexibilization of poly(lactic acid): material preparation and compatibility mechanism. Cellulose. 25(11):6447–6463. https://doi.org/10.1007/s10570-018-2033-7

    Article  CAS  Google Scholar 

  36. Schmidt B (2019) Hydrophilic polymers. Polymers 11(4). https://doi.org/10.3390/polym11040693

  37. Fazekas SDS, Webster RG, Datyner A (1963) New staining procedures for quantitative estimation of proteins on electrophoretic strips. Biochim Biophys Acta 71(2):377–391. https://doi.org/10.1016/0006-3002(63)91092-8

    Article  Google Scholar 

  38. Li SS, Lin CW, Wei KC, Huang CY, Hsu PH, Liu HL, Lu YJ, Lin SC, Yang HW, Ma CCM (2016) Non-invasive screening for early Alzheimer’s disease diagnosis by a sensitively immunomagnetic biosensor. Sci Rep 6:1–11. https://doi.org/10.1038/srep25155

    Article  CAS  Google Scholar 

  39. Diba FS, Kim S, Lee HJ (2017) Electrochemical immunoassay for amyloid-beta 1-42 peptide in biological fluids interfacing with a gold nanoparticle modified carbon surface. Cat Today 295:41–47. https://doi.org/10.1016/j.cattod.2017.02.039

    Article  CAS  Google Scholar 

  40. Lien TTN, Takamura Y, Tamiya E, Vestergaard MC (2015) Modified screen printed electrode for development of a highly sensitive label-free impedimetric immunosensor to detect amyloid beta peptides. Anal Chim Acta 892:69–76. https://doi.org/10.1016/j.aca.2015.08.036

    Article  CAS  PubMed  Google Scholar 

  41. Hu T, Lu SS, Chen CX, Sun J, Yang XR (2017) Colorimetric sandwich immunosensor for A beta((1-42)) based on dual antibody-modified gold nanoparticles. Sensors Actuat B-Chem 243:792–799. https://doi.org/10.1016/j.snb.2016.12.052

    Article  CAS  Google Scholar 

  42. Dai YF, Molazemhosseini A, Liu CC (2017) In vitro quantified determination of beta-amyloid 42 peptides, a biomarker of neuro-degenerative disorders, in PBS and human serum using a simple, cost-effective thin gold film biosensor. Biosensors-Basel. 7(3):1–29. https://doi.org/10.3390/bios7030029

    Article  CAS  Google Scholar 

  43. Wang JX, Zhuo Y, Zhou Y, Wang HJ, Yuan R, Chai YQ (2016) Ceria doped zinc oxide nanoflowers enhanced luminol-based electrochemiluminescence immunosensor for amyloid-beta detection. ACS Appl Mater Interfaces 8(20):12968–12975. https://doi.org/10.1021/acsami.6b00021

    Article  CAS  PubMed  Google Scholar 

  44. Kang DY, Lee JH, Oh BK, Choi JW (2009) Ultra-sensitive immunosensor for beta-amyloid (1-42) using scanning tunneling microscopy-based electrical detection. Biosens Bioelectron 24(5):1431–1436. https://doi.org/10.1016/j.bios.2008.08.018

    Article  CAS  PubMed  Google Scholar 

  45. Ly TN, Park S (2020) High performance detection of Alzheimer’s disease biomarkers based on localized surface plasmon resonance. J Ind Eng Chem 91:182–190. https://doi.org/10.1016/j.jiec.2020.07.051

    Article  CAS  Google Scholar 

  46. Zhao GH, Wang YG, Li XJ, Yue Q, Dong X, Du B et al (2019) Dual-quenching electrochemiluminescence strategy based on three-dimensional metal-organic frameworks for ultrasensitive detection of amyloid-beta. Anal Chem 91(3):1989–1996. https://doi.org/10.1021/acs.analchem.8b04332

    Article  CAS  PubMed  Google Scholar 

  47. Liu L, Xia N, Zhang JB, Mao WH, Wu YY, Ge XX (2015) A graphene oxide-based fluorescent platform for selective detection of amyloid-beta oligomers. Anal Methods 7(20):8727–8732. https://doi.org/10.1039/c5ay02018b

    Article  CAS  Google Scholar 

  48. Qin J, Jo DG, Cho M, Lee Y (2018) Monitoring of early diagnosis of Alzheimer’s disease using the cellular prion protein and poly(pyrrole-2-carboxylic acid) modified electrode. Biosens Bioelectron 113:82–87. https://doi.org/10.1016/j.bios.2018.04.061

    Article  CAS  PubMed  Google Scholar 

  49. Deng CY, Liu H, Si SH, Zhu XJ, Tu QY, Jin Y, Xiang J (2020) An electrochemical aptasensor for amyloid-beta oligomer based on double-stranded DNA as “conductive spring”. Microchim Acta 187(4):1–8. https://doi.org/10.1007/s00604-020-4217-8

    Article  CAS  Google Scholar 

  50. Liu YBA, Xu Q, Zhang YN, Ren BY, Huang LM, Cai H, Xu T, Liu Q, Zhang X (2021) An electrochemical aptasensor based on AuPt alloy nanoparticles for ultrasensitive detection of amyloid-beta oligomers. Talanta. 231:122360. https://doi.org/10.1016/j.talanta.2021.122360

    Article  CAS  PubMed  Google Scholar 

  51. Zhang X, Liu S, Song XL, Wang HW, Wang JF, Wang Y, Huang J, Yu J (2019) Robust and universal SERS sensing platform for multiplexed detection of Alzheimer’s disease core biomarkers using PAapt-AuNPs conjugates. Acs Sensors 4(8):2140–2149. https://doi.org/10.1021/acssensors.9b00974

    Article  CAS  PubMed  Google Scholar 

  52. Moreira FTC, Rodriguez BAG, Dutra RAF, Sales MGF (2018) Redox probe-free readings of a beta-amyloid-42 plastic antibody sensory material assembled on copper@carbon nanotubes. Sensors Actuat B-Chem 264:1–9. https://doi.org/10.1016/j.snb.2018.02.166

    Article  CAS  Google Scholar 

  53. Ozcan N, Medetalibeyoglu H, Akyildirim O, Atar N, Yola ML (2020) Electrochemical detection of amyloid-beta protein by delaminated titanium carbide MXene/multi-walled carbon nanotubes composite with molecularly imprinted polymer. Mater Today Commun 23:101097. https://doi.org/10.1016/j.mtcomm.2020.101097

    Article  CAS  Google Scholar 

Download references

Acknowledgements

0624_2IQBIONEURO_6_E, Impulso de una red de I + i en química biológica para diagnóstico y tratamiento de enfermedades neurológicas EP - INTERREG V A España Portugal (POCTEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felismina T.C. Moreira.

Ethics declarations

Conflict of interest

There is no any financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, F.T., Correia, B.P., Sousa, M.P. et al. Colorimetric cellulose-based test-strip for rapid detection of amyloid β-42. Microchim Acta 188, 334 (2021). https://doi.org/10.1007/s00604-021-04996-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04996-7

Keywords

Navigation