Skip to main content
Log in

One-step synthesis of nitrogen-doped multi-emission carbon dots and their fluorescent sensing in HClO and cellular imaging

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Tunable multicolor carbon dots (CDs) with a quantum yield reach up to 35% were generated directly from rhodamine and urea via one-step hydrothermal approach and purified through silica gel column chromatography. Transmission electron microscopy images reveal that the as-prepared CDs possess a small size distribution below 10 nm with bright blue, green, and yellow color emission, designated as b-CDs, g-CDs, and y-CDs, respectively. The in-depth investigations reveal that the multicolor emission CDs with different fraction displays fluorescence emission wavelength ranges from 398 nm (b-CDs), 525 nm (g-CDs), to 553 nm (y-CDs) which could be well modulated by controlling the amount of heteroatom nitrogen especially amino nitrogen onto their surface structures. Further experiments verify the important role of nitrogen content by using rhodamine solely or substituting urea with sulfur containing compounds as precursors to produce corresponding CDs since the performance is lower than that of urea incorporation. Theoretical calculation results also reveal that the increasing amount of amino nitrogen into their surface structures of b-CDs, g-CDs to y-CDs is responsible for reduced band gaps energy, which result in the redshifted wavelength. Benefiting from the excellent photoluminescence properties, wide pH variation range, high photo stability, and low toxicity, these CDs were employed for HClO sensing at 553 nm within the range 5 to 140 μM with a limit of detection (LOD) of 0.27 ± 0.025 μM (n = 3) and multicolor cellular imaging in HeLa cells.

Graphical abstract

Tunable multicolor carbon dots (CDs) were generated directly from rhodamine and urea via one-step hydrothermal approach and purified through silica gel column chromatography. The as-prepared CDs exhibit bright blue, green, and yellow color emission which could be well modulated by controlling the increasing incorporation of heteroatom nitrogen especially amino nitrogen into their surface structures. These CDs were employed for HClO sensing and demonstrated to multicolor cellular imaging in HeLa cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li H, Su D, Gao H, Yan X, Kong D, Jin R, Liu X, Wang C, Lu G (2020) Design of red emissive carbon dots: robust performance for analytical applications in pesticide monitoring. Anal Chem 92:3198–3205. https://doi.org/10.1021/acs.analchem.9b04917

    Article  CAS  PubMed  Google Scholar 

  2. Jiang K, Sun S, Zhang L, Lu Y, Wu A, Cai C, Lin H (2015) Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Ed 54:5360–5363. https://doi.org/10.1002/anie.201501193

    Article  CAS  Google Scholar 

  3. Wang Y, Su Q, Yang X (2018) Exploration of the synthesis of three types of multicolor carbon dot originating from isomers. Chem Commun 54:11312–11315. https://doi.org/10.1039/C8CC06116E

    Article  CAS  Google Scholar 

  4. Zheng M, Ruan S, Liu S, Sun T, Qu D, Zhao H, Xie Z, Gao H, Jing X, Sun Z (2015) Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 9:11455–11461. https://doi.org/10.1021/acsnano.5b05575

    Article  CAS  PubMed  Google Scholar 

  5. Zhou L, Lin Y, Huang Z, Ren J, Qu X (2012) Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem Commun 48:1147–1149. https://doi.org/10.1039/C2CC16791C

    Article  CAS  Google Scholar 

  6. Loo AH, Sofer Z, Bousa D, Ulbrich P, Bonanni A, Pumera M (2016) Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection. ACS Appl Mater Interfaces 8:1951–1957. https://doi.org/10.1021/acsami.5b10160

    Article  CAS  PubMed  Google Scholar 

  7. Ciftan Hens S, Lawrence WG, Kumbhar AS, Shenderova O (2012) Photoluminescent nanostructures from graphite oxidation. J Phys Chem C 116:20015–20022. https://doi.org/10.1021/jp303061e

    Article  CAS  Google Scholar 

  8. Yuan F, Yuan T, Sui L, Wang Z, Xi Z, Li Y, Li X, Fan L, Tan Z, Chen A, Jin M, Yang S (2018) Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat Commun 9:2249. https://doi.org/10.1038/s41467-018-04635-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ganiga M, Cyriac J (2016) Understanding the photoluminescence mechanism of nitrogen-doped carbon dots by selective interaction with copper ions. Chemphyschem 17:2315–2321. https://doi.org/10.1002/cphc.201600294

    Article  CAS  PubMed  Google Scholar 

  10. Sarkar S, Sudolská M, Dubecký M, Reckmeier CJ, Rogach AL, Zbořil R, Otyepka M (2016) Graphitic nitrogen doping in carbon dots causes red-shifted absorption. J Phys Chem C 120:1303–1308. https://doi.org/10.1021/acs.jpcc.5b10186

    Article  CAS  Google Scholar 

  11. Bourlinos AB, Zbořil R, Petr J, Bakandritsos A, Krysmann M, Giannelis EP (2011) Luminescent surface quaternized carbon dots. Chem Mater 24:6–8. https://doi.org/10.1021/cm2026637

    Article  CAS  Google Scholar 

  12. Xu Q, Kuang T, Liu Y, Cai L, Peng X, Sreenivasan Sreeprasad T, Zhao P, Yu Z, Li N (2016) Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. J Mater Chem B 4:7204–7219. https://doi.org/10.1039/C6TB02131J

    Article  CAS  PubMed  Google Scholar 

  13. Choi Y, Kang B, Lee J, Kim S, Kim GT, Kang H, Lee BR, Kim H, Shim S-H, Lee G, Kwon O-H, Kim B-S (2016) Integrative approach toward uncovering the origin of photoluminescence in dual heteroatom-doped carbon nanodots. Chem Mater 28:6840–6847. https://doi.org/10.1021/acs.chemmater.6b01710

    Article  CAS  Google Scholar 

  14. Zhang YQ, Ma DK, Zhuang Y, Zhang X, Chen W, Hong L-L, Yan QX, Yu K, Huang SM (2012) One-pot synthesis of N-doped carbon dots with tunable luminescence properties. J Mater Chem 22:16714–16718. https://doi.org/10.1039/C2JM32973E

    Article  CAS  Google Scholar 

  15. Miao X, Qu D, Yang D, Nie B, Zhao Y, Fan H, Sun Z (2018) Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv Mater 30:1704740. https://doi.org/10.1002/adma.201704740

    Article  CAS  Google Scholar 

  16. Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A (2012) Optically tunable amino-functionalized graphene quantum dots. Adv Mater 24:5333–5338. https://doi.org/10.1002/adma.201201930

    Article  CAS  PubMed  Google Scholar 

  17. Chua CK, Sofer Z, Simek P, Jankovsky O, Klimova K, Bakardjieva S, Kuckova SH, Pumera M (2015) Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano 9:2548–2555. https://doi.org/10.1021/nn505639q

    Article  CAS  PubMed  Google Scholar 

  18. Qu S, Zhou D, Li D, Ji W, Jing P, Han D, Liu L, Zeng H, Shen D (2016) Toward efficient orange emissive carbon nanodots through conjugated sp2 -domain controlling and surface charges engineering. Adv Mater 28:3516–3521. https://doi.org/10.1002/adma.201504891

    Article  CAS  PubMed  Google Scholar 

  19. Lu S, Sui L, Liu J, Zhu S, Chen A, Jin M, Yang B (2017) Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv Mater 29:4430–4434. https://doi.org/10.1002/adma.201603443

    Article  CAS  Google Scholar 

  20. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CH, Yang X, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49:4430–4434. https://doi.org/10.1002/anie.200906154

  21. Liu ML, Yang L, Li RS, Chen BB, Liu H, Huang CZ (2017) Large-scale simultaneous synthesis of highly photoluminescent green amorphous carbon nanodots and yellow crystalline graphene quantum dots at room temperature. Green Chem 19:3611–3617. https://doi.org/10.1039/C7GC01236E

    Article  CAS  Google Scholar 

  22. Ding H, Yu SB, Wei JS, Xiong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491. https://doi.org/10.1021/acsnano.5b05406

    Article  CAS  PubMed  Google Scholar 

  23. Sun X, Bruckner C, Lei Y (2015) One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission. Nanoscale 7:17278–17282. https://doi.org/10.1039/C5NR05549K

    Article  CAS  PubMed  Google Scholar 

  24. Jin SH, Kim DH, Jun GH, Hong SH, Seokwoo J (2013) Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7:1239–1245. https://doi.org/10.1021/nn304675g

    Article  CAS  PubMed  Google Scholar 

  25. Zhu PP, Cheng Z, Du LL, Chen Q, Tan KJ (2018) Synthesis of the Cu-doped dual-emission fluorescent carbon dots and its analytical application. Langmuir 34:9982–9989. https://doi.org/10.1021/acs.langmuir.8b01230

    Article  CAS  PubMed  Google Scholar 

  26. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed 52:7800–7804. https://doi.org/10.1002/anie.201301114

  27. Liu S, Tian J, Wang L, Zhang Y, Qin X, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012) Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater 24:2037–2041. https://doi.org/10.1002/adma.201200164

  28. Song Y, Zhang CZ, Song JH, Li H, Du D, Lin YL (2014) Ultrafast synthesis of nitrogen-doped carbon dots via neutralization heat for bioimaging and sensing applications. RSC Adv 4:44504–44508. https://doi.org/10.1039/C4RA08523J

    Article  CAS  Google Scholar 

  29. Liu S, Tian J, Wang L, Luo Y, Zhai J, Sun X (2011) Preparation of Photoluminescent carbon nitride dots from CCl4 and 1,2-ethylenediamine: a heat-treatment-based strategy. J Mater Chem 21:7399–7405. https://doi.org/10.1039/C1JM12149A

  30. Liu J, Geng Y, Li D, Yao H, Huo Z, Li Y, Zhang K, Zhu S, Wei H, Xu W, Jiang J, Yang B (2020) Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum. Adv Mater 32:1906641. https://doi.org/10.1002/adma.201906641

    Article  CAS  Google Scholar 

  31. Gong X, Lu W, Liu Y, Li Z, Shuang S, Dong C, Choi MMF (2015) Low temperature synthesis of phosphorous and nitrogen co-doped yellow fluorescent carbon dots for sensing and bioimaging. J Mater Chem B 3:6813–6819. https://doi.org/10.1039/C5TB00575B

    Article  CAS  PubMed  Google Scholar 

  32. Chen Y, Zheng M, Xiao Y, Dong H, Zhang H, Zhuang J, Hu H, Lei B, Liu Y (2016) A self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission. Adv Mater 28:312–318. https://doi.org/10.1002/adma.201503380

    Article  CAS  PubMed  Google Scholar 

  33. Ma P, Sun X, Pan W, Yu G, Wang J (2020) Green and orange emissive carbon dots with high quantum yields dispersed in matrices for phosphor-based white LEDs. ACS Sustain Chem Eng 8:3151–3161. https://doi.org/10.1021/acssuschemeng.9b06008

    Article  CAS  Google Scholar 

  34. Tetsuka H, Nagoya A, Fukusumi T, Matsui T (2016) Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv Mater 28:4632–4638. https://doi.org/10.1002/adma.201600058

    Article  CAS  PubMed  Google Scholar 

  35. Tian XT, Yin XB (2019) Carbon dots, unconventional preparation strategies, and applications beyond photoluminescence. Small 15:1901803. https://doi.org/10.1002/smll.201901803

    Article  CAS  Google Scholar 

  36. Wang R, Wang R, Ju D, Lu W, Jiang C, Shan X, Chen Q, Sun G (2018) “ON–OFF–ON” fluorescent probes based on nitrogen-doped carbon dots for hypochlorite and bisulfite detection in living cells. Analyst 143(23):5834–5840. https://doi.org/10.1039/C8AN01585F

    Article  CAS  PubMed  Google Scholar 

  37. Zhang C, Liu M, Li T, Liu S, Chen Q, Zhang J, Zhang K (2020) One-pot hydrothermal synthesis of dual-emission fluorescent carbon dots for hypochlorous acid detection. Dyes Pigments 180:108507. https://doi.org/10.1016/j.dyepig.2020.108507

    Article  CAS  Google Scholar 

  38. Wang M, Chen J, Liu C, Qiu J, Wang X, Chen P, Xu C (2017) A graphene quantum dots–hypochlorite hybrid system for the quantitative fluorescent determination of total antioxidant capacity. Small 13(30):1700709. https://doi.org/10.1002/smll.201700709

    Article  CAS  Google Scholar 

  39. Ma Y, Xu G, Wei F, Cen Y, Xu X, Shi M, Cheng X, Chai Y, Sohail M, Hu Q (2018) One-pot synthesis of a magnetic, ratiometric fluorescent nanoprobe by encapsulating Fe3O4 magnetic nanoparticles and dual-emissive rhodamine B modified carbon dots in metal-organic framework for enhanced HClO sensing. ACS Appl Mater Interfaces 10:20801–20805. https://doi.org/10.1021/acsami.8b05643

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Guo G, Gao J, Li Z, Yin X, Zhu C, Xia Y (2020) Multicenter-emitting carbon dots: color tunable fluorescence and dynamics monitoring oxidative stress in vivo. Chem Mater 32(19):8146–8157. https://doi.org/10.1021/acs.chemmater.0c01391

    Article  CAS  Google Scholar 

  41. Chen G, Song F, Wang J, Yang Z, Sun S, Fan J, Qiang X, Wang X, Dou B, Peng X (2012) FRET spectral unmixing: a ratiometric fluorescent nanoprobe for hypochlorite. Chem Commun 48:2949–2451. https://doi.org/10.1039/C2CC17617C

    Article  CAS  Google Scholar 

  42. Wei Z, Li H, Liu S, Wang W, Chen H, Xiao L, Ren C, Chen X (2019) Carbon dots as fluorescent/colorimetric probes for real-time detection of hypochlorite and ascorbic acid in cells and body fluid. Anal Chem 91:15477–15483. https://doi.org/10.1021/acs.analchem.9b03272

    Article  CAS  PubMed  Google Scholar 

  43. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914. https://doi.org/10.1007/s00604-017-2318-9

    Article  CAS  Google Scholar 

  44. Chen W, Li D, Tian L, Xiang W, Wang T, Hu W, Hu Y, Chen S, Chen J, Dai Z (2018) Synthesis of graphene quantum dots from natural polymer starch for cell imaging. Green Chem 20:4438–4442. https://doi.org/10.1039/C8GC02106F

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Natural Science Foundation of China (Nos. 21804319 for C. Wang, 21790390 and 21790391 for L.M) and the Science Foundation of China University of Petroleum (Beijing) (2462018YJRC041 and 2462020YXZZ016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunxia Wang or Ming Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 902 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Pan, C., Wei, Z. et al. One-step synthesis of nitrogen-doped multi-emission carbon dots and their fluorescent sensing in HClO and cellular imaging. Microchim Acta 188, 330 (2021). https://doi.org/10.1007/s00604-021-04973-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04973-0

Keywords

Navigation