Issue 39, 2021

B-Ring-extended flavonol-based photoCORM: activated by cysteine-ratiometric fluorescence sensing and accurate control of linear CO release

Abstract

The first B-ring-extended (to biphenyl) flavonol-based Cys-ratiometric fluorescent probe B-bph-fla-acr (2-([1,1′-biphenyl]-4-yl)-4-oxo-4H-chromen-3-yl acrylate) is developed. B-bph-fla-acr can ratiometrically sense and non-ratiometrically image endogenous and exogenous cysteine (Cys) in living HeLa cells and zebrafish rapidly (45 s), selectively (vs. homocysteine and glutathione), sensitively (detection limit: 18.5 nM), and with a large Stokes shift (186 nm). Quantitatively released (from the reaction of B-bph-fla-acr with Cys) fluorophore B-bph-fla-OH (2-([1,1′-biphenyl]-4-yl)-3-hydroxy-4H-chromen-4-one) is designed as a photoCORM (photo-triggered CO releasing molecule). Under O2 and visible light irradiation, the amount of CO released by B-bph-fla-OH can be accurately controlled linearly by adjusting the light irradiation intensity, irradiation time, or photoCORM dose. This process is accompanied by fluorescence quenching; therefore, the location of the photoCORM and the CO release process can be monitored in real time. B-bph-fla-acr and all reaction products exhibit good membrane permeability and low toxicity for living HeLa cells. In living HeLa cells and zebrafish, B-bph-fla-acr can image endogenous and exogenous Cys, and the released B-bph-fla-OH can photo-release CO under O2 at room temperature. This study is the first to combine a B-ring-extended flavonol-based fluorescent probe (for the effective ratiometric sensing and non-ratiometric imaging of endogenous and exogenous Cys in vitro and in vivo) with a photoCORM (Cys-activated, visible light-triggered linear CO release under O2). Our study provides important insights into the biological roles of Cys and CO, as well as a reliable method for safely supplying accurately controlled amounts of CO to living systems, thereby facilitating the development of convenient clinical diagnostic molecular tools and therapeutic prodrugs.

Graphical abstract: B-Ring-extended flavonol-based photoCORM: activated by cysteine-ratiometric fluorescence sensing and accurate control of linear CO release

Supplementary files

Article information

Article type
Paper
Submitted
15 May 2021
Accepted
17 Aug 2021
First published
09 Sep 2021

J. Mater. Chem. B, 2021,9, 8263-8271

B-Ring-extended flavonol-based photoCORM: activated by cysteine-ratiometric fluorescence sensing and accurate control of linear CO release

Y. Sun and C. Yu, J. Mater. Chem. B, 2021, 9, 8263 DOI: 10.1039/D1TB01093J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements