Skip to main content
Log in

Microstructure Quantification and Multiresolution Mechanical Characterization of Ti-Based Bulk Metallic Glass-Matrix Composites

  • Advances in Multi-modal Characterization of Structural Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study explores the benefits of utilizing recently developed protocols for microstructure quantification and the multiresolution mechanical characterization of Ti-based bulk metallic glass matrix composites. Four alloys with different compositions and amorphous (glass) fractions were studied. Microstructure quantification of the amorphous and crystalline phase in these alloys was performed using rotationally invariant 2-point spatial statistics and principal component analysis on approximately 1300 micrographs. Mechanical properties of the constituent phases as well as the bulk mechanical properties of the composites were measured using recently established high-throughput multiresolution spherical indentation stress–strain protocols. The results showed that decreasing amorphous volume fraction results in a decrease in both bulk Young’s modulus and the bulk yield strength of the samples, without significant changes in the mechanical properties of the constituent phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.F. Ashby, and A.L. Greer, Scripta Mater. 54(3), 321–326. (2006).

    Article  Google Scholar 

  2. M. Telford, Mater. Today 7(3), 36–43. (2004).

    Article  Google Scholar 

  3. J.A. Kolodziejska, H. Kozachkov, K. Kranjc, A. Hunter, E. Marquis, W.L. Johnson, K.M. Flores, and D.C. Hofmann, Sci. Rep. 6(1), 22563. (2016).

    Article  Google Scholar 

  4. C.A. Schuh, A.C. Lund, and T.G. Nieh, Acta Mater. 52(20), 5879–5891. (2004).

    Article  Google Scholar 

  5. M. Zink, K. Samwer, W.L. Johnson, and S.G. Mayr, Phys. Rev. B 73(17), 172203. (2006).

    Article  Google Scholar 

  6. S. Pauly, S. Gorantla, G. Wang, U. Kühn, and J. Eckert, Nat Mater 9(6), 473–477. (2010).

    Article  Google Scholar 

  7. Y. Wu, Y. Xiao, G. Chen, C.T. Liu, and Z. Lu, Adv. Mater. 22(25), 2770–2773. (2010).

    Article  Google Scholar 

  8. W.H. Li, B.C. Wei, T.H. Zhang, D.M. Xing, L.C. Zhang, and Y.R. Wang, Intermetallics 15(5–6), 706–710. (2007).

    Article  Google Scholar 

  9. A. Khosravani, A. Cecen, and S.R. Kalidindi, Acta Mater. 123, 55–69. (2017).

    Article  Google Scholar 

  10. J.S. Weaver, A. Khosravani, A. Castillo, and S.R. Kalidindi, Integr. Mater. Manuf. Innov. 5(1), 1–20. (2016).

    Article  Google Scholar 

  11. A. Iskakov, Y.C. Yabansu, S. Rajagopalan, A. Kapustina, and S.R. Kalidindi, Acta Mater. 144, 758–767. (2018).

    Article  Google Scholar 

  12. X. Gong, Y.C. Yabansu, P.C. Collins, and S.R. Kalidindi, Materials 13(20), 4641. (2020).

    Article  Google Scholar 

  13. A. Khosravani, C.M. Caliendo, and S.R. Kalidindi, Metals 10(1), 18. (2020).

    Article  Google Scholar 

  14. A. Khosravani, L. Morsdorf, C.C. Tasan, and S.R. Kalidindi, Acta Mater. 153, 257–269. (2018).

    Article  Google Scholar 

  15. J.S. Weaver, M.W. Priddy, D.L. McDowell, and S.R. Kalidindi, Acta Mater. 117, 23–34. (2016).

    Article  Google Scholar 

  16. S. Pathak, D. Stojakovic, S.R. Kalidindi, Acta Mater. 57 (2009).

  17. A. Gupta, A. Cecen, S. Goyal, A.K. Singh, and S.R. Kalidindi, Acta Mater. 91, 239–254. (2015).

    Article  Google Scholar 

  18. S.R. Kalidindi, Hierarchical Materials Informatics: Novel Analytics for Materials Data (Elsevier, Amsterdam, 2015).

    Google Scholar 

  19. S.R. Niezgoda, A.K. Kanjarla, and S.R. Kalidindi, Integr. Mater. Manuf. Innov. 2, 3. (2013).

    Article  Google Scholar 

  20. S.R. Niezgoda, D.T. Fullwood, and S.R. Kalidindi, Acta Mater. 56(18), 5285–5292. (2008).

    Article  Google Scholar 

  21. S.R. Kalidindi, S.R. Niezgoda, and A.A. Salem, JOM 63(4), 34–41. (2011).

    Article  Google Scholar 

  22. D.C. Hofmann, J.-Y. Suh, A. Wiest, M.-L. Lind, M.D. Demetriou, and W.L. Johnson, Proc. Natl. Acad. Sci. 105(51), 20136–20140. (2008).

    Article  Google Scholar 

  23. R.O. Diaz, Dynamic deformation of titanium-based bulk metallic glass composites, Georgia Institute of Technology, 2016.

  24. D.J. Higham, N.J. Higham, MATLAB guide, SIAM2016.

  25. A. Iskakov, and S.R. Kalidindi, Integr. Mater. Manuf. Innov. 9(1), 70–88. (2020).

    Article  Google Scholar 

  26. N. Otsu, IEEE Trans. Syst. Man Cybern. 9(1), 62–66. (1979).

    Article  MathSciNet  Google Scholar 

  27. S.R. Niezgoda, A.K. Kanjarla, and S.R. Kalidindi, Integr. Mater. Manuf. Innov. 2(1), 1–27. (2013).

    Article  Google Scholar 

  28. Y.C. Yabansu, P. Steinmetz, J. Hötzer, S.R. Kalidindi, and B. Nestler, Acta Mater. 124, 182–194. (2017).

    Article  Google Scholar 

  29. A. Cecen, Y.C. Yabansu, and S.R. Kalidindi, Acta Mater. 158, 53–64. (2018).

    Article  Google Scholar 

  30. S. Pathak, J. Shaffer, and S.R. Kalidindi, Scripta Mater. 60(6), 439–442. (2009).

    Article  Google Scholar 

  31. H. Hertz, Miscellaneous Papers (MacMillan and Co. Ltd, New York, 1896).

    MATH  Google Scholar 

  32. S. Pathak, J.S. Weaver, C. Sun, Y. Wang, S.R. Kalidindi, and N.A. Mara, Spherical Nanoindentation Stress-Strain Analysis of Ion-Irradiated Tungsten (Springer International Publishing, Cham, 2019), pp 617–635.

    Google Scholar 

  33. S. Pathak, S.R. Kalidindi, J.S. Weaver, Y. Wang, R.P. Doerner, and N.A. Mara, Sci. Rep. 7(1), 11918. (2017).

    Article  Google Scholar 

  34. S.J. Vachhani, and S.R. Kalidindi, Acta Mater. 90, 27–36. (2015).

    Article  Google Scholar 

  35. S. Parvinian, Y.C. Yabansu, A. Khosravani, H. Garmestani, and S.R. Kalidindi, Integr. Mater. Manuf. Innov. 9(3), 199–212. (2020).

    Article  Google Scholar 

  36. S. Basu, A. Moseson, and M.W. Barsoum, J. Mater. Res. 21(10), 2628–2637. (2006).

    Article  Google Scholar 

  37. J.S. Field, and M.V. Swain, J. Mater. Res. 8(2), 297–306. (1993).

    Article  Google Scholar 

  38. S.R. Kalidindi, and S. Pathak, Acta Mater. 56(14), 3523–3532. (2008).

    Article  Google Scholar 

  39. A.L. Greer, Y.Q. Cheng, and E. Ma, Mater. Sci. Eng. R. Rep. 74(4), 71–132. (2013).

    Article  Google Scholar 

  40. R. Maaß, D. Klaumünzer, E.I. Preiß, P.M. Derlet, and J.F. Löffler, Scripta Mater. 66(5), 231–234. (2012).

    Article  Google Scholar 

  41. A.C. Lund, and C.A. Schuh, Acta Mater. 51(18), 5399–5411. (2003).

    Article  Google Scholar 

  42. J. Rottler, and M.O. Robbins, Phys. Rev. E 68(1), 011507. (2003).

    Article  Google Scholar 

  43. J.H. Perepezko, S.D. Imhoff, M.-W. Chen, J.-Q. Wang, and S. Gonzalez, Proc. Natl. Acad. Sci. 111(11), 3938. (2014).

    Article  Google Scholar 

  44. J.S. Weaver, A. Khosravani, A. Castillo, S.R. Kalidindi, Integrating Materials and Manufacturing Innovation In press (2016).

  45. S. Mohan, N. Millan-Espitia, M. Yao, N.V. Steenberge, S.R. Kalidindi, Experimental Mechanics (2021).

  46. D.K. Patel, S.R. Kalidindi, Acta Mater 112 (2016).

Download references

Acknowledgements

AK and SK gratefully acknowledge support from the Office of Naval Research with Grant # N00014-18-1-2879.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya R. Kalidindi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravani, A., Thadhani, N. & Kalidindi, S.R. Microstructure Quantification and Multiresolution Mechanical Characterization of Ti-Based Bulk Metallic Glass-Matrix Composites. JOM 73, 3312–3322 (2021). https://doi.org/10.1007/s11837-021-04864-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04864-y

Navigation