Skip to main content
Log in

Acceleration of microalgal biofilm formation on PET by surface engineering

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Biofilm-based microalgal cultivation has recently received great attention owing to its low harvesting cost, but the main problem in practicing it is the low rate of attachment on solid carriers. The aim of this research is to introduce novel physical and wet chemical surface engineering methods to provide more favorable polymeric surfaces for microalgal adhesion. PET threads were used as a substrate in the treatments. The surface of the threads was treated with chromic acid, sodium hydroxide and sandpaper. The chemical composition, surface morphology, topography and contact angle of the threads were characterized. The threads were placed in a biofilm-based cylindrical photobioreactor as a bed for attachment. Two freshwater single-cell microalgae, Scenedesmus dimorphus and Chlorella vulgaris, were cultivated in the photobioreactor to assess the attachment rate of the threads. The analysis of SEM and AFM images confirmed the creation of new grooves. The AFM image analysis showed 323%, 184% and 11.5% increase in the surface roughness, while there were 73%, 51%, and 30% rates of reduction in the contact angles for the treatments with acid, sandpaper and base, respectively. Creation of new grooves, increase of the surface roughness and decrease of the contact angle led to an increase in the microalgae attachment rate. The best results were achieved with acid treatment. It led to a remarkable increase in the attachment rate of S. dimorphus. However, the attachment of C. vulgaris cells was not efficient. This research is the first to apply a surface engineering method to increase the microalgal attachment rate in biofilm-based systems. The insight that is provided can be of benefit for further studies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. E. Irving and D. G. Allen, Appl. Microbiol. Biotechnol., 92, 283 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. C. Gudin and C. Thepenier, Advances In Biotechnological Processes, 6, 73 (1986).

    CAS  Google Scholar 

  3. J. Cao, W. Yuan, Z. Pei, T. Davis, Y. Cui and M. Beltran, J. Manuf. Sci. Eng., 131, 064505 (2009).

    Article  Google Scholar 

  4. N. Boelee, H. Temmink, M. Janssen, C. Buisman and R. Wijffels, Water Res., 45, 5925 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Y. Cui, W. Yuan and J. Cao, Int. J. Agric. Biol. Eng., 6, 44 (2013).

    Google Scholar 

  6. A. Ozkan, K. Kinney, L. Katz and H. Berberoglu, Bioresour. Technol., 114, 542 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Q. Wei, Z. Hu, G. Li, B. Xiao, H. Sun and M. Tao, Front. Environ. Sci. Eng. China, 2, 446 (2008).

    Article  Google Scholar 

  8. Y. Shen, X. Xu, Y. Zhao and X. Lin, Bioprocess Biosyst. Eng., 37, 441 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. J. F. Schumacher, M. L. Carman, T. G. Estes, A. W. Feinberg, L. H. Wilson, M. E. Callow, J. A. Callow, J. A. Finlay and A. B. Brennan, Biofouling, 23, 55 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. M. Babu, Effect of algal biofilm and operational conditions on nitrogen removal in waste stabilization ponds, CRC Press, The Netherlands (2011).

    Book  Google Scholar 

  11. R. Oliveira, J. Azeredo and P. Teixeira, Biofilms in wastewater treatment: An interdisciplinary approach, S. Wuertz, P. L. Bishop and P. A. Wilderer Eds., International Water Association, London (2003).

  12. M. B. Johnson and Z. Wen, Appl. Microbiol. Biotechnol., 85, 525 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. T. Bhaiji, Enhancing microalgae attachment for biofilm-based photobioreactors, Cranfield University, Cranfield (2016).

    Google Scholar 

  14. M. Gross, X. Zhao, V. Mascarenhas and Z. Wen, Biotechnol. Biofuels, 9, 38 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. D. S. Bag, V. P. Kumar and S. Maiti, J. Appl. Polym. Sci., 71, 1041 (1999).

    Article  CAS  Google Scholar 

  16. J. M. Goddard and J. Hotchkiss, Prog. Polym. Sci., 32, 698 (2007).

    Article  CAS  Google Scholar 

  17. K. Holmberg and H. Hydén, Preparative Biochem., 15, 309 (1985).

    Article  CAS  Google Scholar 

  18. L. Penn and H. Wang, Polym. Adv. Technol., 5, 809 (1994).

    Article  CAS  Google Scholar 

  19. E. Sheng, I. Sutherland, D. Brewis and R. Heath, J. Adhes Sci. Technol., 9, 47 (1995).

    Article  CAS  Google Scholar 

  20. S. Tho and K. Ibrahim, J. Teknol., 59, 5 (2012).

    Google Scholar 

  21. ASTM, Standard practice for preparation of surfaces of plastics prior to adhesive bonding, ASTM International, Pennsylvania (2017).

    Google Scholar 

  22. S. Danaee, N. Yazdanbakhsh, H. Naghoosi and A. Sheykhinejad, Korean J. Chem. Eng., 35, 1144 (2018).

    Article  CAS  Google Scholar 

  23. J. Kotai, Instructions for preparation of modified nutrient solution z8, Norwegian Institute for Water Research, Oslo (1972).

    Google Scholar 

  24. Q. Huang, F. Jiang, L. Wang and C. Yang, Engineering, 3, 318 (2017).

    Article  Google Scholar 

  25. L. Katarzyna, G. Sai and O. A. Singh, Renew. Sustain. Energy Rev., 42, 1418 (2015).

    Article  CAS  Google Scholar 

  26. S. Chatterjee, N. Biswas, A. Datta, R. Dey and P. Maiti, Microscopy, 63, 269 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. A. Pathan, J. Bond and R. Gaskin, Mater. Today, 12, 32 (2010).

    Article  Google Scholar 

  28. T. Norton, R. Thompson, J. Pope, C. Veltkamp, B. Banks, C. Howard and S. Hawkins, Aquat. Microb. Ecol., 16, 199 (1998).

    Article  Google Scholar 

  29. T. Tolker-Nielsen, U. C. Brinch, P. C. Ragas, J. B. Andersen, C. S. Jacobsen and S. Molin, J. Bacteriol., 182, 6482 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. N. Cordeiro, M. Ornelas, A. Ashori, S. Sheshmani and H. Norouzi, Carbohydr. Polym., 87, 2367 (2012).

    Article  CAS  Google Scholar 

  31. R. M. Donlan, Emerging Infect. Dis., 8, 881 (2002).

    Article  Google Scholar 

  32. M. Drobota, L. M. Gradinaru, C. Ciobanu and D. S. Vasilescu, University Politehnica of Bucharest Scientific Bulletin Series B-Chemistry and Materials Science, 77, 131 (2015).

    Google Scholar 

  33. P. Slepička, N. S. Kasálková, E. Stránská, L. Bačáková and V. Švorčík, Express. Polym. Lett., 7, 535 (2013).

    Article  Google Scholar 

  34. H. Zhang, Y. Tang, D. Cai, X. Liu, X. Wang, Q. Huang and Z. Yu, J. Hazard. Mater., 181, 801 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. H. Wang, S. Chen and J. Zhang, Colloid Polym. Sci., 287, 541 (2009).

    Article  CAS  Google Scholar 

  36. Z. Fang, J. Yang, Y. Liu, T. Shao and C. Zhang, IEEE Trans. Plasma Sci., 41, 1627 (2013).

    Article  CAS  Google Scholar 

  37. I. Donelli, G. Freddi, V. A. Nierstrasz and P. Taddei, Polym. Degrad. Stab., 95, 1542 (2010).

    Article  CAS  Google Scholar 

  38. Y. Liu, T. He and C. Gao, Colloids Surf. B Biointerfaces, 46, 117 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. W. Hao, L. Yanpeng, S. Zhou, R. Xiangying, Z. Wenjun and L. Jun, Int. J. Agric. Biol. Eng., 10, 125 (2017).

    Google Scholar 

  40. B. Bhushan, Modern tribology handbook, two volume set, CRC press, Florida, 74 (2000).

    Book  Google Scholar 

  41. M. Raposo, Q. Ferreira and P. Ribeiro, Modern Research and Educational Topics in Microscopy, 1, 758 (2007).

    Google Scholar 

  42. M. Taufik and P. K. Jain, J. Manuf. Process., 30, 161 (2017).

    Article  Google Scholar 

  43. Y. Cui and W. Yuan, Appl. Energy, 112, 485 (2013).

    Article  CAS  Google Scholar 

  44. H. K. Webb, R. J. Crawford, T. Sawabe and E. P. Ivanova, Microbes Environ., 24, 39 (2009).

    Article  PubMed  Google Scholar 

  45. P. Blais, D. Carlsson, G. Csullog and D. Wiles, J. Colloid Interface Sci., 47, 636 (1974).

    Article  CAS  Google Scholar 

  46. L. K. Ista, M. E. Callow, J. A. Finlay, S. E. Coleman, A. C. Nolasco, R. H. Simons, J. A. Callow and G. P. Lopez, Appl. Environ. Microbiol., 70, 4151 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. M. E. Callow and R. L. Fletcher, Int. Biodeterior. Biodegradation, 34, 333 (1994).

    Article  CAS  Google Scholar 

  48. R. L. Fletcher and M. E. Callow, British Phycological J., 27, 303 (1992).

    Article  Google Scholar 

  49. R. Sekar, V. Venugopalan, K. Satpathy, K. Nair and V. Rao, Asian pacific phycology in the 21st century: Prospects and challenges, Springer, Hong Kong, 109 (2004).

    Book  Google Scholar 

  50. A. Ozkan and H. Berberoglu, ASME 2011 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 169 (2011).

  51. D. Manheim and Y. Nelson, Environ. Prog. Sustain. Energy, 32, 946 (2013).

    Article  CAS  Google Scholar 

  52. P. Bhattacharya, S. Lin, J. P. Turner and P. C. Ke, J. Phys. Chem. C, 114, 16556 (2010).

    Article  CAS  Google Scholar 

  53. F. R. Trainor and C. A. Burg, J. Phycol., 1, 15 (1965).

    Article  Google Scholar 

  54. N. A. Eckardt, The Plant Cell, 22, 2924 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. L. D. Renner and D. B. Weibel, MRS Bulletin, 36, 347 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. A. Ozkan and H. Berberoglu, Colloids Surf. B Biointerfaces, 112, 287 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. L. Moreno, E. M. Prieto and H. Casanova, Ciencia en Besarrollo, 6, 17 (2015).

    Article  Google Scholar 

  58. J.-H. Wang, L.-L. Zhuang, X.-Q. Xu, V. M. Deantes-Espinosa, X.-X. Wang and H.-Y. Hu, Renew. Sustain. Energy Rev., 92, 331 (2018).

    Article  Google Scholar 

  59. A. Lizzul, P. Hellier, S. Purton, F. Baganz, N. Ladommatos and L. Campos, Bioresour. Technol., 151, 12 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. J. B. Vander Wiel, J. D. Mikulicz, M. R. Boysen, N. Hashemi, P. Kalgren, L. M. Nauman, S. J. Baetzold, G. G. Powell, Q. He and N. N. Hashemi, RSC Adv., 7, 4402 (2017).

    Article  CAS  Google Scholar 

  61. F. Akgül, İ.T. Kizilkaya, R. Akgül and H. Erduğan, Turk J. Fish Aquat. Sci., 17, 609 (2017).

    Article  Google Scholar 

  62. M. Lurling, The smell of water: grazer-induced colony formation in Scenedesmus, Wageningen Agricultural University, Netherlands (1999).

    Google Scholar 

  63. S. Mayeli, S. Nandini and S. Sarma, Aquatic Ecology, 38, 515 (2005).

    Article  Google Scholar 

  64. K. J. Edwards and A. D. Rutenberg, Chem. Geol., 180, 19 (2001).

    Article  CAS  Google Scholar 

  65. X. Chen, T. Liu and Q. Wang, Microb. Cell Fact., 13, 142 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. M. Sirmerova, G. Prochazkova, L. Siristova, Z. Kolska and T. Branyik, J. Appl. Phycol., 25, 1687 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has not received any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamideh Ofoghi.

Additional information

Declaration of Authors’ Contribution

S. Danaee was in the charge of conceptualizing, designing, performing the experiments, analyzing the data and drafted the article. S. M. Heydarian and H. Ofoghi supervised the research and were responsible for the concepts, design, critical revision of the article for important intellectual contents, and the final approval of the article.

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danaee, S., Ofoghi, H. & Heydarian, S.M. Acceleration of microalgal biofilm formation on PET by surface engineering. Korean J. Chem. Eng. 38, 2500–2509 (2021). https://doi.org/10.1007/s11814-021-0873-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0873-6

Keywords

Navigation