Skip to main content
Log in

Growth and nitridation of β-Ga2O3 thin films by Sol-Gel spin-coating epitaxy with post-annealing process

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

β-Ga2O3 thin films have been successfully prepared on (0001) sapphire substrate by simple and effective sol-gel spin-coating method with post-annealing process (SSP). The effects of different preheating temperatures on the crystal quality and surface morphology of β-Ga2O3 films have been systematically investigated. The β-Ga2O3 thin films exhibit good crystallinity with (\(\bar 2\)01) preferred orientation and smooth surface morphology. The results showed that β-Ga2O3 thin films directly grown on (0001) sapphire by SSP method have comparable or better crystal quality compared with other epitaxial methods. The β-Ga2O3 thin films annealed at 1000 °C with the preheating temperature of 300 °C and above have smooth and crack-free surface morphology. The single-domain-growth mode of β-Ga2O3 thin film prepared on ~7° off-angled (0001) sapphire substrate toward <11\(\bar 2\)0> plane has been confirmed by SSP method, and the porous GaN layers have been obtained by the nitridation of the Sol-Gel grown β-Ga2O3 thin films for future applications in high-quality free-standing GaN substrates.

Highlights

  • β-Ga2O3 films with (\(\bar 2\)01) preferred orientation were prepared by the simple SSP method.

  • Single-domain-growth mode of β-Ga2O3 film on ~7° off-angled sapphire was confirmed.

  • Low-stress GaN porous template was obtained by the nitridation of the SSP β-Ga2O3 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oh S et al. (2017) High Responsivity β-Ga2O3 Metal-Semiconductor-Metal Solar-Blind Photodetectors with Ultraviolet Transparent Graphene Electrodes. ACS Photon 5(3):1123–1128. https://doi.org/10.1021/acsphotonics.7b01486

    Article  CAS  Google Scholar 

  2. Zhou C, Liu K, Chen X et al. (2020) Performance improvement of amorphous Ga2O3 ultraviolet photodetector by annealing under oxygen atmosphere. J Alloy Compd 840:155585. https://doi.org/10.1016/j.jallcom.2020.155585

    Article  CAS  Google Scholar 

  3. Liu XZ, Guo P, Sheng T et al. (2016) β-Ga2O3 thin films on sapphire pre-seeded by homo-self-templated buffer layer for solar-blind UV photodetector. Optical Mater 51:203–207. https://doi.org/10.1016/j.optmat.2015.11.023

    Article  CAS  Google Scholar 

  4. Higashiwaki M, Sasaki K, Murakami H et al. (2016) Recent progress in Ga2O3 power devices. Semiconductor Sci Technol 31(3):034001. https://doi.org/10.1088/0268-1242/31/3/034001

    Article  CAS  Google Scholar 

  5. Chen YP, Liang HW et al. (2015) Effect of growth pressure on the characteristics of β-Ga2O3 films grown on GaAs (100) substrates by MOCVD method. Appl Surf Sci 325:258–261. https://doi.org/10.1016/j.apsusc.2014.11.074

    Article  CAS  Google Scholar 

  6. Yao Y, Okur S et al. (2018) Growth and characterization of α-, β-, and ϵ-phases of Ga2O3 using MOCVD and HVPE techniques. Mater Res Lett 6(5):268–275. https://doi.org/10.1080/21663831.2018.1443978

    Article  CAS  Google Scholar 

  7. Pratiyush AS, Xia ZB, Kumar S et al. (2018) MBE-grown β-Ga2O3-based Schottky UV-C photodetectors with rectification ratio ~107. IEEE Photon Technol Lett 30(23):2025–2028. https://doi.org/10.1109/LPT.2018.2874725

    Article  CAS  Google Scholar 

  8. Wu C, Guo DY, Zhang LY et al. (2020) Systematic investigation of the growth kinetics of β-Ga2O3 epilayer by plasma enhanced chemical vapor deposition. Appl Phys Lett 116(7):072102. https://doi.org/10.1063/1.5142196

    Article  CAS  Google Scholar 

  9. Liu Z, Liu Y, Yang HFM, Yang Y et al. (2010) A Mediator-Free Tyrosinase Biosensor Based on ZnO Sol-Gel Matrix. Electroanalysis 17(12):1065–1070. https://doi.org/10.1002/elan.200403215

    Article  CAS  Google Scholar 

  10. Yu LY, Shen HM et al. (2010) PVDF-TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol-gel method and blending method. J Appl Polym Sci 113(3):1763–1772. https://doi.org/10.1002/app.29886

    Article  CAS  Google Scholar 

  11. Salles P, Cao I, Guzman R et al. (2021) Facile Chemical Route to Prepare Water Soluble Epitaxial Sr3Al2O6 Sacrificial Layers for Free-Standing Oxides. Adv Mater Interfac 8(5):2001643. https://doi.org/10.1002/admi.202001643

    Article  CAS  Google Scholar 

  12. Brunckova H, Medvecky L, Briancin J et al. (2016) Perovskite lanthanum niobate and tantalate thin films prepared by sol-gel method. Mater Lett 165:239–242. https://doi.org/10.1016/j.matlet.2015.12.014

    Article  CAS  Google Scholar 

  13. Corriu RJP, Leclercq D (2010) Recent Developments of Molecular Chemistry for Sol-Gel Processes. Angew Chem Int Ed 35(13-14):1420–1436. https://doi.org/10.1002/anie.199614201

    Article  Google Scholar 

  14. Miao Z, Xu DS, Ouyang JH et al. (2012) Electrochemically Induced Sol-Gel Preparation of Single-Crystalline TiO2 Nanowires. Nano Lett 2(7):717–720. https://doi.org/10.1021/nl025541w

    Article  CAS  Google Scholar 

  15. Andronic L, Perniu D, Duta A (2010) Journal of Sol-Gel Science and Technology. J Sol-Gel Sci Technol 66(3):472–480

  16. Kelso MV, Mahenderkar NK et al. (2019) Spin coating epitaxial films. Science 364(6436):166–169. https://doi.org/10.1126/science.aaw6184

    Article  CAS  Google Scholar 

  17. Kiyono H, Sakai T, Takahashi M, Shimada S (2010) Thermogravimetric analysis and microstructural observations on the formation of GaN from the reaction between Ga2O3 and NH3. J Cryst Growth 312(19):2823–2827. https://doi.org/10.1016/j.jcrysgro.2010.06.021

    Article  CAS  Google Scholar 

  18. Shen H, Yin Y, Kun T et al. (2018) Growth and characterization of β-Ga2O3 thin films by sol-gel method for fast-response solar-blind ultraviolet photodetectors. J Alloy Compd 766:601–608. https://doi.org/10.1016/j.jallcom.2018.06.313

    Article  CAS  Google Scholar 

  19. Kokubun Y, Miura K, Endo F, Nakagomi S (2007) Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors. Appl Phys Lett 90(3):031912. https://doi.org/10.1063/1.2432946

    Article  CAS  Google Scholar 

  20. Li X, Bi DQ, Yi CY et al. (2016) A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353(6294):58–62. https://doi.org/10.1126/science.aaf8060

    Article  CAS  Google Scholar 

  21. Chebil W, Boukadhaba BA, Fouzri A (2016) Epitaxial growth of ZnO on quartz substrate by sol-gel spin-coating method. Superlattices Microstruct 95:48–55. https://doi.org/10.1016/j.spmi.2016.04.033

    Article  CAS  Google Scholar 

  22. Ou SL, Wuu DS, Fu YC et al. (2012) Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition. Mater Chem Phys 133(2-3):700–705. https://doi.org/10.1016/j.matchemphys.2012.01.060

    Article  CAS  Google Scholar 

  23. Ghose S, Rahman S et al. (2017) Growth and characterization of beta-Ga2O3 thin films by molecular beam epitaxy for deep-UV photodetectors. J Appl Phys 122(9):095302. https://doi.org/10.1063/1.4985855

    Article  CAS  Google Scholar 

  24. Yu M, Lv C, Yu J et al. (2020) High-performance photodetector based on sol-gel epitaxially grown α/β-Ga2O3 thin films. Mater Today Commun 25:101532. https://doi.org/10.1016/j.mtcomm.2020.101532

    Article  CAS  Google Scholar 

  25. Li WH, Zhao XL et al. (2018) Fabrication of cerium-doped beta-Ga2O3 epitaxial thin films and deep ultraviolet photodetectors. Appl Opt 57(3):538–543. https://doi.org/10.1364/AO.57.000538

    Article  CAS  Google Scholar 

  26. Lee M, Yang M, Lee HY et al. (2020) The growth of HVPE α-Ga2O3 crystals and its solar-blind UV photodetector applications. Mater Sci Semiconductor Process 123:105565. https://doi.org/10.1016/j.mssp.2020.105565

    Article  CAS  Google Scholar 

  27. Nakagomi S, Kokubun Y (2013) Cross‐sectional TEM imaging of β-Ga2O3 thin films formed on c‐plane and a‐plane sapphire substrates. Phys status solidi (a) 210(9):1738–1744. https://doi.org/10.1002/pssa.201329040

    Article  CAS  Google Scholar 

  28. Chen YP, Liang HW, Xia XC et al. (2015) The lattice distortion of β-Ga2O3 film grown on c-plane sapphire. J Mater Sci: Mater Electron 26(5):3231–3235. https://doi.org/10.1007/s10854-015-2821-x

    Article  CAS  Google Scholar 

  29. Li YW, Xiu XQ, Xu WL et al. (2021) Microstructural analysis of heteroepitaxial β-Ga2O3 films grown on (0001) sapphire by halide vapor phase epitaxy. J Phys D: Appl Phys 54(1):014003. https://orcid.org/0000-0002-9495-6809

  30. Rafique S, Han L, Neal AT et al. (2018) Towards High-mobility Heteroepitaxial β-Ga2O3 on Sapphire Dependence on The Substrate Off-Axis Angle. Phys Status Solidi (a) 215(2):1700467. https://doi.org/10.1002/pssa.201700467

    Article  CAS  Google Scholar 

  31. Zhang FB, Saito K, Tanaka T et al. (2014) Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition. J Cryst Growth 387:96–100. https://doi.org/10.1016/j.jcrysgro.2013.11.022

    Article  CAS  Google Scholar 

  32. Lv Y, Ma J, Mi W et al. (2012) Characterization of β-Ga2O3 thin films on sapphire (0001) using metal-organic chemical vapor deposition technique. Vacuum 86(12):1850–1854. https://doi.org/10.1016/j.vacuum.2012.04.019

    Article  CAS  Google Scholar 

  33. Xu WL, Shi JC, Li YW et al. (2021) Study of β-Ga2O3 films hetero-epitaxially grown on off-angled sapphire substrates by halide vapor phase epitaxy. Mater Lett 289(29):129411. https://doi.org/10.1016/j.matlet.2021.129411

    Article  CAS  Google Scholar 

  34. Xiong ZN, Xiu XQ, YW et al. (2018) Growth of β-Ga2O3 Films on Sapphire by Hydride Vapor Phase Epitaxy. Chin Phys Lett 35(5):141–143. https://doi.org/10.1088/0256-307X/35/5/058101

    Article  Google Scholar 

  35. Rafique S, Han L, Neal AT et al. (2016) Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition. Appl Phys Lett 109(13):16–19. https://doi.org/10.1063/1.4963820

    Article  CAS  Google Scholar 

  36. Pratiyush AS, Krishnamoorthy S, Solanke SV et al. (2017) High responsivity in molecular beam epitaxy grown beta-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector. Appl Phys Lett 110(22):221107. https://doi.org/10.1063/1.4984904

    Article  CAS  Google Scholar 

  37. Chen DZ, Xu Y et al. (2019) Thin-film transistors based on wide bandgap Ga2O3 films grown by aqueous-solution spin-coating method. Micro Nano Lett 14(10):1052–1055. https://doi.org/10.1049/mnl.2018.5825

    Article  CAS  Google Scholar 

  38. Li YW, Xiong ZN, Zhang DD, Xiu XQ et al. (2018) Study of GaN nanorods converted from β-Ga2O3. Superlattices Microstruct 117:235–240. https://doi.org/10.1016/j.spmi.2018.03.037

    Article  CAS  Google Scholar 

  39. Li YW, Xiu XQ, Xiong ZN et al. (2019) Single-crystal GaN layer converted from β-Ga2O3 films and its application for free-standing GaN. R Soc Chem 21:1224–1230. https://doi.org/10.1039/C8CE01336E

    Article  CAS  Google Scholar 

  40. Luo LQ, Yu K, Zhu ZQ, Zhang YS et al. (2004) Field emission from GaN nanobelts with herringbone morphology. Mater Lett 58(22-23):2893–2896. https://doi.org/10.1016/j.matlet.2004.05.014

    Article  CAS  Google Scholar 

  41. Lan ZH, Liang CH, Hsu CW et al. (2010) Nanohomojunction (GaN) and Nanoheterojunction (InN) Nanorods on One-Dimensional GaN Nanowire Substrates. Adv Funct Mater 14(3):233–237. https://doi.org/10.1002/adfm.200304403

    Article  CAS  Google Scholar 

  42. Ning JQ, Xu SJ et al. (2007) 418cm−1 Raman scattering from gallium nitride nanowires: is it a vibration mode of N-rich Ga-N bond configuration? Appl Phys Lett 90(10):103117. https://doi.org/10.1063/1.2780081

    Article  CAS  Google Scholar 

  43. Harima H (2002) Properties of GaN and related compounds studied by means of Raman scattering. J Phys Condens Matter 14(38):R967. https://doi.org/10.1088/0953-8984/14/38/201

    Article  CAS  Google Scholar 

  44. Filippidis L, Siegle H et al. (1996) Raman frequencies and angular dispersion of polar modes in aluminum nitride and gallium nitride. Phys Status Solidi (b) 198(2):621–627. https://doi.org/10.1002/pssb.2221980207

    Article  CAS  Google Scholar 

  45. Li YW, Xiu XQ, Xiong ZN et al. (2019) Single-crystalline GaN porous template prepared by a simple top-down nitridation technique. Mater Lett 240(1):121–123. https://doi.org/10.1016/j.matlet.2018.12.120

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key R&D Program of China (2017YFB0404201), State Key R&D Program of Jiangsu Province (BE2019103, BE2020004), Six-talent peaks project of Jiangsu province (XCL-107), Funds from the Solid-state Lighting and Energy-saving Electronics Collaborative Innovation Center and PAPD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangqian Xiu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Xiu, X., Cheng, F. et al. Growth and nitridation of β-Ga2O3 thin films by Sol-Gel spin-coating epitaxy with post-annealing process. J Sol-Gel Sci Technol 100, 183–191 (2021). https://doi.org/10.1007/s10971-021-05629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05629-4

Keywords

Navigation