Skip to main content
Log in

Photocatalytically active ZnO flaky nanoflowers for environmental remediation under solar light irradiation: effect of morphology on photocatalytic activity

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

ZnO-flaky-like nanoflowers with enhanced photocatalytic activity were synthesized by a new hydrothermal technique. The material was characterized and the photocatalytic studies were conducted under solar light irradiation for a model azo dye, Orange G. The material was compared with ZnO nanosphere and nanorod. The results showed the particle size of the nanostructures as a nanorod is 62–81 nm, as a nanosphere is 40–70 nm and as flaky nanoflowers is 20–30 nm (thickness of the flake). The photocatalytic activity showed an enhanced 2-fold increase in the activity for nanoflowers when compared to nanorods and spheres. The Brauner–Emmett–Teller results showed that the nanoflowers (14.197 m2 g−1) had a higher surface area nearly 3.5 times when compared to the nanospheres (4.06 m2 g−1) and seven times with nanorods (2.1 m2 g−1) which is the possibility of such high photocatalytic activity. The smaller particle size and the arrangement of nanoflowers play an important role in enhanced photocatalytic activity.

Graphic abstract

ZnO flaky-nanoflowers as enhanced photocatalyst for the degradation of organics under solar light irradiation. It showed a two-fold increase in activity than ZnO nanospheres and nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Rasmi P 2018 IOP Conf. Ser. Earth Environ. Sci. 120 012016

  2. Zorawar S and Pooja C 2016 J. Occup. Med. Toxicol. 39 1

    Google Scholar 

  3. Haibo C, Chen W, Li H, Ma R, Yu Z, Li L et al 2019 J. Environ. Manag. 237 519

    Article  Google Scholar 

  4. Stylidi M, Kondarides D I and Verykios X E 2004 Appl. Catal. B Environ. 47 189

    Article  CAS  Google Scholar 

  5. Kezhen Q, Bei C, Yu J and Wingkei H 2017 J. Alloys Compd. 727 792

    Article  Google Scholar 

  6. Suganya Josephine G A, Saranya R and Sivasamy A 2015 J. Saudi Chem. Soc. 19 549

    Article  Google Scholar 

  7. Fujishima A and Honda K 1972 Nature 238 37

    Article  CAS  Google Scholar 

  8. Li X, Lu X, Qi H, Yu K and Zhang K 2018 ChemistrySelect 15 5025

    Article  Google Scholar 

  9. Rania A E, Gallia P, Magnus W and Omer N 2018 Photonics Nanostruct. 32 11

    Article  Google Scholar 

  10. Gunja S and Satya Pal S 2020 AIP Conf. Proc. 2220 020184

  11. Ni Y H, Wei X W, Hong J M and Ye Y 2005 Mater. Sci. Eng. 121 4247

    Article  Google Scholar 

  12. Lin C S, Hwang C C, Lee W H and Tong W Y 2007 Mater. Sci. Eng. B 140 31

    Article  CAS  Google Scholar 

  13. Yang L Y, Dong S Y, Sun J H, Feng J L, Wu Q H and Sun S P 2010 J. Hazard. Mater. 179 438

    Article  CAS  Google Scholar 

  14. Ma H, Ma W, Chen J F, Liu X Y, Peng Y Y, Yang Z Y et al 2018 J. Am. Chem. Soc. 140 5272

    Article  CAS  Google Scholar 

  15. Chatterjee S, Bhanja P, Ghosh D, Kumar P, Kanti Das S, Dalapati S et al 2021 ChemSusChem 14 408

    Article  CAS  Google Scholar 

  16. Tam K H, Djurisic A B, Chan C M B, Xi Y Y, Tse C W, Leung Y H et al 2008 Thin Solid Films 516 6167

    Article  CAS  Google Scholar 

  17. Thanakorn W, Narongchai O C and Sorapong P 2013 Energy Procedia 34 801

    Article  Google Scholar 

  18. Vijayakumar B W, Shivaraj C, Manjunatha B, Abhishek G, Nagaraju P K and Panda 2020 Sens. Int. 1 100018

  19. Lee K M, Lai C W, Ngai K S and Juan J C 2016 Water Res. 88 428

    Article  CAS  Google Scholar 

  20. Madathil, Aneesh N P, Vanaja K A and Jayaraj M K 2007 Int. Soc. Opt. Photon. 6639 66390

  21. Cao Z, Wang Y and Li Z 2016 Nanoscale Res. Lett. 11 34

    Article  Google Scholar 

  22. Suganya Josephine G A, Jayaprakash K, Suresh M and Sivasamy A 2019 Mater. Today Proc. 17 345

    Article  CAS  Google Scholar 

  23. Meenakshi G, Sivasamy A, Suganya Josephine G A and Kavitha S 2016 J. Mol. Catal. A Chem. 411 167

    Article  Google Scholar 

  24. Meetani M A, Rauf M A, Hisaindee S, Khaleel A, Al Zamly A and Ahmad A 2011 RSC Adv. 1 490

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Director Research and Principal AVIT-VMRF, for providing seed grant for conducting the work. We would also like to thank the Director CLRI, for the infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G A Suganya Josephine.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1437 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suganya Josephine, G.A., Jayaprakash, K., Meenakshi, G. et al. Photocatalytically active ZnO flaky nanoflowers for environmental remediation under solar light irradiation: effect of morphology on photocatalytic activity. Bull Mater Sci 44, 247 (2021). https://doi.org/10.1007/s12034-021-02531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02531-1

Keywords

Navigation