Skip to main content
Log in

Electrochemical analysis of monoethylene glycol using rGO/AuPd-np-modified glassy carbon electrode

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

An electrode for monoethylene glycol analysis was developed based on the modification of the surface of the glassy carbon electrode with electrochemically reduced graphene oxide and gold and palladium nanoparticles (GCE/rGO/AuPd-np). Its analytical performance was assessed by determining some analytical figures of merit. Graphene oxide was reduced electrochemically as well as the metal particles with gold deposited by chronopotentiometry and palladium by cyclic voltammetry (CV). The electrode was characterized by MET, TEM and EDS techniques. The study of alcohol behaviour was performed electrochemically using CV technique. The positive synergistic effect of metals provided greater electrocatalytic response, stability and resistance to poisoning. The GCE/rGO/AuPd-np sensor presented a detection limit equal to 31.48 µmol l–1 for a linear range of 89.5–179 µmol l–1 with a linear correlation coefficient of 0.9096 and high stability, not losing response even after 650 cycles.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ghodkay V, Gubner R, Soames A, Barifcani A and Zaboon S 2017 J. Nat. Gas Sci. Eng. 44 214

    Article  CAS  Google Scholar 

  2. Lee J B, Shon S, Kwon O S, Min J S, Kim N Y and Paeng K J 2016 Bull. Korean Chem. Soc. 37 938

    Article  CAS  Google Scholar 

  3. Prodromidis M I, Veltsistas P G, Efstathiou C E and Karayannis M I 2001 Electroanalysis 13 960

    Article  CAS  Google Scholar 

  4. Gras K, Luong J, Lin M, Gras R and Shellie R A 2015 Anal. Methods 7 5545

    Article  CAS  Google Scholar 

  5. Hu X and Wang J 2012 Electroanalysis 24 1639

    Article  CAS  Google Scholar 

  6. Paeng K J, Kwon O S, Sung T M, Lee J B, You J H and Shon S 2013 Bull. Korean Chem. Soc. 33 4243

    Google Scholar 

  7. Semenov A P, Medvedev V I, Gushchin P A, Yakushev V S and Vinokurov V A 2016 Chem. Technol. Fuels Oils 52 43

    Article  CAS  Google Scholar 

  8. Luong J, Gras R, Cortes H J and Shellie R A 2013 Anal. Chim. Acta 805 101

    Article  CAS  Google Scholar 

  9. Tomala A, Karpinska A, Werner W S M, Olver A and Störi H 2010 Wear 269 804

    Article  CAS  Google Scholar 

  10. Xu S, Fan S, Wang Y and Lang X 2017 Chem. Eng. Sci. 171 293

    Article  CAS  Google Scholar 

  11. Nagesh I V, Koley K C, Sen S, Mohan S and Sahu S 2015 Med. J. Armed Forces India 71 S36

    Article  CAS  Google Scholar 

  12. Hodgman M J, Krenzelok E and Wezorek C 1997 Clin. Toxicol. 35 109

    CAS  Google Scholar 

  13. Dianyi Yu M 2010 Case Stud. Environ. Med. 16 65

    Google Scholar 

  14. Dziadosz M 2018 J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1072 100

    Article  CAS  Google Scholar 

  15. Hložek T, Bursová M and Čabala R 2015 Clin. Biochem. 48 189

    Article  CAS  Google Scholar 

  16. Ehlers A, Morris C and Krasowski M D 2013 Springerplus 2 1

    Article  CAS  Google Scholar 

  17. Polshettiwar V and Varma R S 2010 Green Chem. 12 743

    Article  CAS  Google Scholar 

  18. Xu J, Chen T, Qiao X, Sheng Q, Yue T and Zheng J 2019 Colloids Surf. A: Physicochem. Eng. Asp. 561 25

    Article  CAS  Google Scholar 

  19. Hutton L A, Vidotti M, Patel A N, Newton M E, Unwin P R and MacPherson J V 2011 J. Phys. Chem. C 115 1649

    Article  CAS  Google Scholar 

  20. Fritea L, Bănică F, Costea T O, Moldovan L, Iovan C and Cavalu S 2018 J. Electroanal. Chem. 830–831 63

    Article  CAS  Google Scholar 

  21. Su W, Sun R, Ren F, Yao Y, Fei Z, Wang H et al 2019 Appl. Surf. Sci. 491 735

    Article  CAS  Google Scholar 

  22. Duan W, Li A, Chen Y, Zhang J and Zhuo K 2019 J. Appl. Electrochem. 49 413

    Article  CAS  Google Scholar 

  23. Luo J, Cong J, Fang R, Fei X and Liu X 2014 Microchim. Acta 181 1257

    Article  CAS  Google Scholar 

  24. Jin C, Zhu J, Dong R and Huo Q 2016 Electrochim. Acta 190 829

    Article  CAS  Google Scholar 

  25. Zaleska-Medynska A, Marchelek M, Diak M and Grabowska E 2016 Adv. Colloid Interface Sci. 229 80

    Article  CAS  Google Scholar 

  26. Zhang L F and Zhang C Y 2013 Nanoscale 5 6074

    Article  CAS  Google Scholar 

  27. Chen S S, Yang Z Z, Wang A J, Fang K M and Feng J J 2018 J. Colloid Interface Sci. 509 10

    Article  CAS  Google Scholar 

  28. Ran X, Qu Q, Liu C, Zhang S, Qian X, Wang Q et al 2018 New J. Chem. 42 4631

    Article  CAS  Google Scholar 

  29. Feng J J, Chen S S, Chen X L, Zhang X F and Wang A J 2018 J. Colloid. Interface Sci. 509 73

    Article  CAS  Google Scholar 

  30. Beck A, Horváth A, Schay Z, Stefler G, Koppány Z, Sajó I et al 2007 Top. Catal. 44 115

    Article  CAS  Google Scholar 

  31. Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    Article  CAS  Google Scholar 

  32. Wiik H E 2014 MSc dissertation (Trondheim: Norwegian University of Science and Technology)

    Google Scholar 

  33. Neghmouche N, Khelef A and Lanez T 2015 J. Fundam. Appl. Sci. 1 23

    Article  Google Scholar 

  34. Neghmouche N S and Lanez T 2013 Phys. Astron. 4 37

    Google Scholar 

  35. Ngamchuea K, Eloul S, Tschulik K and Compton R G 2014 J. Solid State Electrochem. 18 3251

    Article  CAS  Google Scholar 

  36. Bhatti N K, Subhani M S, Khan A Y, Qureshi R and Rahman A 2005 Turk. J. Chem. 29 659

    CAS  Google Scholar 

  37. Nicholson R S 1965 Anal. Chem. 37 1351

    Article  CAS  Google Scholar 

  38. Randviir E P 2018 Electrochim. Acta 286 179

    Article  CAS  Google Scholar 

  39. US Departament of Health and Human Services 1996 Q2B Validation of analytical procedures: methodology

  40. Rego E C P 2013 Internal publication of method validation course national institute of quality metrology and technology (INMETRO)

  41. Cochran W G 1941 Ann. Eugen. 11 47

    Article  Google Scholar 

  42. Anderson T W and Darling D A 1952 Ann. Math. Stat. 23 193

    Article  Google Scholar 

  43. Mukaka M M 2012 Malawi Med. J. 24 69

    CAS  Google Scholar 

  44. Mesquita Brito N, Possidônio Amarante Junior O D E, Polese L and Lúcia Ribeiro M 2003 Pestic. Rev. Ecotoxicologia e Meio Ambient. 13 129

    Google Scholar 

  45. de Barros C B 2002 Biológico 64 175

    Google Scholar 

  46. National Institute of Quality Metrology and Technology 2007 Guidance on validating chemical testing methods

  47. Muniz R D O, Martins S B, Honório G G, Da Cunha J N, De Souza C G, De Andrade D F et al 2019 Anal. Methods 11 767

    Article  CAS  Google Scholar 

  48. da Mesquita P L, de Afonso R J C F, de Aquino S F and de Leite G S 2013 Eng. Sanit. e Ambient. 18 295

    Article  Google Scholar 

  49. Amin S, Soomro M T, Memon N, Solangi A R, Sirajuddin, Qureshi T et al 2014 Environ. Nanotechnol. Monit. Manag. 1–2 8

    Google Scholar 

  50. Kannan R, Kim A R and Yoo D J 2014 J. Appl. Electrochem. 44 893

    Article  CAS  Google Scholar 

  51. Baronia R, Goel J, Baijnath, Kataria V, Basu S and Singhal S K 2019 Int. J. Hydrog. Energy 44 10023

    Article  CAS  Google Scholar 

  52. da Silva S G 2017 PhD thesis (São Paulo: Energy and Nuclear Research Institute)

  53. Yildiz G and Kadirgan F 1994 J. Electrochem. Soc. 141 725

    Article  CAS  Google Scholar 

  54. de Oliveira R, Pissetti F L and Lucho A M S 2016 Quim. Nova 39 146

    Google Scholar 

  55. Peñafiel R M D 2007 MSc dissertation (Rio de Janeiro: Federal University of Rio de Janeiro - COPPE)

    Google Scholar 

  56. Santos C S 2016 PhD thesis (Ponta Grossa: State University of Ponta Grossa)

  57. Dutta S, Ray C, Sarkar S, Roy A, Sahoo R and Pal T 2015 Electrochim. Acta 180 1075

    Article  CAS  Google Scholar 

  58. Mahapatra S S, Datta J and Shen P K 2011 Res. Int. J. Electrochem. 2011 16

    Google Scholar 

  59. dos Assis K L S C, Archanjo B S, Achete C A and D’Elia E 2020 Mater. Res. 23 20190513

    Article  CAS  Google Scholar 

  60. Burke L D and McRann M 1981 J. Electroanal. Chem. 125 387

    Article  CAS  Google Scholar 

  61. Anderson T W and Darling D A 1954 J. Am. Stat. Assoc. 49 765

    Article  Google Scholar 

  62. Drews A 2008 Man. Hydrocarb. Anal. i 670

    Google Scholar 

  63. Ojani R, Khanmohammadi A and Raoof J B 2016 Bull. Mater. Sci. 39 13

    Article  CAS  Google Scholar 

  64. Giordano G F, De Camargo C L, Vieira L C S, D'Ávila M A, Couto B C, De Carvalho R M et al 2018 Energy Fuels 32 6577

    Article  CAS  Google Scholar 

  65. Olson K R 2014 Manual de toxicologia clínica (Porto Alegre: AMGH Editora)

    Google Scholar 

Download references

Acknowledgements

We thank Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support. Victor Paiva would like to thank CNPq for the Master’s Fellowship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliane D’elia.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 144 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paiva, V.M., Assis, K.L.S.C., Archanjo, B.S. et al. Electrochemical analysis of monoethylene glycol using rGO/AuPd-np-modified glassy carbon electrode. Bull Mater Sci 44, 248 (2021). https://doi.org/10.1007/s12034-021-02517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02517-z

Keywords

Navigation