Skip to main content
Log in

Seismic Control of Base-Isolated Liquid Storage Tanks Subjected to Bi-directional Strong Ground Motions

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Damage of liquid storage tanks (LSTs) due to earthquakes has increased the base isolation systems' demand. As base isolation is a proven control system for mitigating the damages in typical load-bearing structures, its implementation in LSTs is undoubtedly of interest. In the current study, the seismic performance of the base-isolated 3D model of concrete LSTs is investigated under two-component earthquakes as not much literature is available on the subject. The ABAQUS software is used for nonlinear analyses of the base-isolated LST in which liquid and isolators are modeled by the arbitrary Lagrangian–Eulerian and connector elements. For the numerical study, two concrete LSTs of the square and rectangular plans are considered with five lead rubber bearing isolators. The change in response quantities of interest is evaluated under parametric variations, including the type of earthquake, peak ground acceleration, the angle of incidence of the earthquake, and the effective period of the isolator. The response quantities of interest considered are shear forces, overturning moments, top board displacements, hydrodynamic pressure, sloshing height, and Von-Mises stress. The results of the numerical investigation show that the efficacy of base-isolated 3D LST should be assessed at least under a two-component earthquake. Further, the study shows that base isolation is highly effective in controlling seismic stresses developed in LST under two-component earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Hosseinzadeh, N.; Kaypour Sangsari, M.; Tavakolian Ferdosiyeh, H.: Shake table study of annular baffles in steel storage tanks as sloshing dependent variable dampers. J. Loss Prev. Process Ind. 32, 299–310 (2014). https://doi.org/10.1016/j.jlp.2014.09.011

    Article  Google Scholar 

  2. Liu, W.K.: Finite element procedures for fluid–structure interactions and application to liquid storage tanks. Nucl. Eng. Des. 65, 221–238 (1981). https://doi.org/10.1016/0029-5493(81)90091-1

    Article  Google Scholar 

  3. Crane, J.K.; Wilcox, R.B.; Hopps, N.W.; Browning, D.F.; Martinez, M.D.; Moran, B.D.; Penko, F.A.; Rothenberg, J.E.; Henesian, M.A.; Dane, C.B.; Hackel, L.A.: Integrated operations of the National Ignition Facility (NIF) optical pulse generation development system. In: Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, p. 100 (1999)

  4. Brunesi, E.; Nascimbene, R.; Pagani, M.; Beilic, D.: Seismic performance of storage steel tanks during the May 2012 Emilia, Italy, earthquakes. J. Perform. Constr. Facil. 29, 1–9 (2012). https://doi.org/10.1061/(ASCE)CF.1943-5509.0000628

    Article  Google Scholar 

  5. Virella, J.C.; Godoy, L.A.; Su, L.E.; Suárez, L.E.: Dynamic buckling of anchored steel tanks subjected to horizontal earthquake excitation. J. Constr. Steel Res. 62, 521–531 (2006). https://doi.org/10.1016/j.jcsr.2005.10.001

    Article  Google Scholar 

  6. Kumbhar, O.; Kumar, R.; Panaiyappan, P.L.; Farsangi, E.N.: Direct displacement based design of reinforced concrete elevated water tanks frame staging. Int. J. Eng. 32, 1395–1406 (2019). https://doi.org/10.5829/ije.2019.32.10a.09

    Article  Google Scholar 

  7. Hosseini, M.; Goudarzi, M.A.; Soroor, A.: Reduction of seismic sloshing in floating roof liquid storage tanks by using a suspended annular baffle (SAB). J. Fluids Struct. 71, 40–55 (2017). https://doi.org/10.1016/j.jfluidstructs.2017.02.008

    Article  Google Scholar 

  8. Shekari, M.R.; Hekmatzadeh, A.A.; Amiri, S.M.: On the nonlinear dynamic analysis of base-isolated three-dimensional rectangular thin-walled steel tanks equipped with vertical baffle. Thin-Walled Struct. 138, 79–94 (2019). https://doi.org/10.1016/j.tws.2019.01.037

    Article  Google Scholar 

  9. Housner, G.W.: Dynamic pressures on accelerated fluid containers. Bull. Seismol. Soc. Am. 47, 15–35 (1957)

    Article  Google Scholar 

  10. Housner, G.W.: The dynamic behavior of water tanks. Bull. Seismol. Soc. Am. 53, 381–387 (1963)

    Article  Google Scholar 

  11. Vandiver, J.K.; Mitome, S.: Effect of liquid storage tanks on the dynamic response of offshore platforms. Appl. Ocean Res. 66, 67–74 (1979)

    Article  Google Scholar 

  12. Veletsos, A.S.: Seismic Effects in Flexible Liquid Storage Tanks (1974)

  13. Warnitchai, P.; Pinkaew, T.: Modelling of liquid sloshing in rectangular tanks with flow-dampening devices. Eng. Struct. 20, 593–600 (1998)

    Article  Google Scholar 

  14. Wozniak, R.S.; Mitchell, W..: Basis of seismic design provisions for welded steel oil storage tanks. In: Advances in Storage Tank Design, American Petroleum Institute, Washington, USA (1978)

  15. Faltinsen, O.M.; Rognebakke, O.F.; Lukovsky, I.A.; Timokha, A.N.: Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. J. Fluid Mech. 407, 201–234 (2000). https://doi.org/10.1017/S0022112099007569

    Article  MathSciNet  MATH  Google Scholar 

  16. Gavrilyuk, I.P.; Lukovsky, I.A.; Timokha, A.N.: Linear and nonlinear sloshing in a circular conical tank. Fluid Dyn. Res. 37, 399–429 (2005). https://doi.org/10.1016/j.fluiddyn.2005.08.004

    Article  MathSciNet  MATH  Google Scholar 

  17. Virella, J.C.; Prato, C.A.; Godoy, L.A.: Linear and nonlinear 2D finite element analysis of sloshing modes and pressures in rectangular tanks subject to horizontal harmonic motions. J. Sound Vib. 312, 442–460 (2008). https://doi.org/10.1016/j.jsv.2007.07.088

    Article  Google Scholar 

  18. Bakalis, K.; Fragiadakis, M.; Vamvatsikos, D.: Surrogate modeling for the seismic performance assessment of liquid storage tanks. J. Struct. Eng. 143, 04016199 (2017). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001667

    Article  Google Scholar 

  19. Yazdanian, M.; Fu, F.: Parametric study on dynamic behavior of rectangular concrete storage tanks. Coupled Syst. Mech. 6, 189–206 (2017). https://doi.org/10.12989/csm.2017.6.2.18910.12989/csm.2017.6.2.189

    Article  Google Scholar 

  20. Mandal, K.K.; Maity, D.: Nonlinear finite element analysis of water in rectangular tank. Ocean Eng. 121, 595–601 (2016). https://doi.org/10.1016/j.oceaneng.2016.05.048

    Article  Google Scholar 

  21. Vern, S.; Shrimali, M.K.; Bharti, S.D.; Datta, T.K.: Attaining optimum passive control in liquid-storage tank by using multiple vertical baffles. Pract. Period. Struct. Des. Constr. 26, 04021018 (2021). https://doi.org/10.1061/(asce)sc.1943-5576.0000586

    Article  Google Scholar 

  22. Zhao, C.; Chen, J.; Wang, J.; Yu, N.; Xu, Q.: Seismic mitigation performance and optimization design of NPP water tank with internal ring baffles under earthquake loads. Nucl. Eng. Des. 318, 182–201 (2017). https://doi.org/10.1016/j.nucengdes.2017.04.023

    Article  Google Scholar 

  23. Rawat, A.; Mittal, V.; Chakraborty, T.; Matsagar, V.: Earthquake induced sloshing and hydrodynamic pressures in rigid liquid storage tanks analyzed by coupled acoustic-structural and Euler–Lagrange methods. Thin-Walled Struct. 134, 333–346 (2019). https://doi.org/10.1016/j.tws.2018.10.016

    Article  Google Scholar 

  24. Moslemi, M.; Farzin, A.; Kianoush, M.R.: Nonlinear sloshing response of liquid-filled rectangular concrete tanks under seismic excitation. Eng. Struct. 188, 564–577 (2019). https://doi.org/10.1016/j.engstruct.2019.03.037

    Article  Google Scholar 

  25. Vern, S.; Shrimali, M.K.; Bharti, S.D.; Datta, T.K.: Behavior of liquid storage tank under multidirectional excitation. In: Lecture Notes in Civil Engineering, pp. 203–217. Springer (2021)

  26. Vern, S.; Shrimali, M.K.; Bharti, S.D.; Datta, T.K.: Impact of angle of incidence in rectangular liquid storage tanks. In: Technologies for Sustainable Development, pp. 68–72. CRC Press (2020)

  27. Vern, S.; Shrimali, M.K.; Bharti, S.D.; Datta, T.K.: Seismic behavior of baffled liquid storage tank under far-field and near-field earthquake. In: Recent Advances in Computational Mechanics and Simulations, pp. 445–456. Springer, Singapore (2021)

  28. Hosseini, M.; Farsangi, E.N.: Telescopic columns as a new base isolation system for vibration control of high-rise buildings. Earthq. Struct. 3, 853–867 (2012). https://doi.org/10.12989/eas.2012.3.6.853

    Article  Google Scholar 

  29. Farsangi, E.N.; Tasnimi, A.A.; Yang, T.Y.; Takewaki, I.; Mohammadhasani, M.: Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations. Smart Struct. Syst. 22, 383–397 (2018)

    Google Scholar 

  30. Wen, Y.: Method for random vibration of hysteretic systems. J. Eng. Mech. Div. 102, 246–263 (1976)

    Google Scholar 

  31. Lee, D.M.; Medland, I.C.: Base isolation systems for earthquake protection of multi-storey shear structures. Earthq. Eng. Struct. Dyn. 7, 555–568 (1979). https://doi.org/10.1002/eqe.4290070605

    Article  Google Scholar 

  32. Bhandari, M.; Bharti, S.D.; Shrimali, M.K.; Datta, T.K.: The numerical study of base-isolated buildings under near-field and far-field earthquakes. J. Earthq. Eng. 22, 989–1007 (2018). https://doi.org/10.1080/13632469.2016.1269698

    Article  Google Scholar 

  33. Panchal, V.R.; Jangid, R.S.: Behaviour of liquid storage tanks with VCFPS under near-fault ground motions. Struct. Infrastruct. Eng. 8, 71–88 (2012). https://doi.org/10.1080/15732470903300919

    Article  Google Scholar 

  34. Rabiee, R.; Chae, Y.: Adaptive base isolation system to achieve structural resiliency under both short- and long-period earthquake ground motions. J. Intell. Mater. Syst. Struct. 30, 16–31 (2019). https://doi.org/10.1177/1045389X18806403

    Article  Google Scholar 

  35. Jing, W.; Cheng, X.; Shi, W.: Dynamic responses of sliding isolation concrete rectangular liquid storage structure with limiting devices under bidirectional earthquake actions. Arab. J. Sci. Eng. 43, 1911–1924 (2018). https://doi.org/10.1007/s13369-017-2814-6

    Article  Google Scholar 

  36. Hashemi, S.; Aghashiri, M.H.: Seismic responses of base-isolated flexible rectangular fluid containers under horizontal ground motion. Soil Dyn. Earthq. Eng. 100, 159–168 (2017). https://doi.org/10.1016/j.soildyn.2017.05.010

    Article  Google Scholar 

  37. Rawat, A.; Matsagar, V.A.; Nagpal, A.K.: Numerical study of base-isolated cylindrical liquid storage tanks using coupled acoustic-structural approach. Soil Dyn. Earthq. Eng. 119, 196–219 (2019). https://doi.org/10.1016/j.soildyn.2019.01.005

    Article  Google Scholar 

  38. Ozsarac, V.; Brunesi, E.; Nascimbene, R.: Earthquake-induced nonlinear sloshing response of above-ground steel tanks with damped or undamped floating roof. Soil Dyn. Earthq. Eng. 144, 106673 (2021). https://doi.org/10.1016/J.SOILDYN.2021.106673

    Article  Google Scholar 

  39. Caprinozzi, S.; Paolacci, F.; Bursi, O.S.; Dolšek, M.: Seismic performance of a floating roof in an unanchored broad storage tank: experimental tests and numerical simulations. J. Fluids Struct. 105, 103341 (2021). https://doi.org/10.1016/J.JFLUIDSTRUCTS.2021.103341

    Article  Google Scholar 

  40. Bonet, J.L.; Miguel, P.F.; Fernandez, M.A.; Romero, M.L.: Analytical approach to failure surfaces in reinforced and biaxial bending. J. Struct. Eng. Eng. 130, 1133–1144 (2006). https://doi.org/10.1061/(ASCE)0733-9445(2004)130

    Article  Google Scholar 

  41. Ryan, K.L.; Kelly, J.M.; Chopra, A.K.: Nonlinear model for lead-rubber bearings including axial-load effects. J. Eng. Mech. 131, 1270–1278 (2005). https://doi.org/10.1061/(ASCE)0733-9399(2005)131:12(1250)

    Article  Google Scholar 

  42. Sanaz, R.; Armen, D.K.: A stochastic ground motion model with separable temporal and spectral nonstationarities. Earthq. Eng. Struct. Dyn. 41, 1549–1568 (2012). https://doi.org/10.1002/eqe

    Article  Google Scholar 

  43. Van Leer, B.: Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys. 23, 276–299 (1977). https://doi.org/10.1016/0021-9991(77)90095-X

    Article  MATH  Google Scholar 

  44. Liyanapathirana, D.S.: Arbitrary Lagrangian Eulerian based finite element analysis of cone penetration in soft clay. Comput. Geotech. 36, 851–860 (2009). https://doi.org/10.1016/j.compgeo.2009.01.006

    Article  Google Scholar 

  45. Dassault Systèmes Simulia Corp.: Analysis User’s Manual Volume 1: Introduction, Spatial modeling, execution and output. Abaqus 6.12. I, 831 (2012)

  46. Cheng, X.; Jing, W.; Gong, L.: Simplified model and energy dissipation characteristics of a rectangular liquid-storage structure controlled with sliding base isolation and displacement-limiting devices. J. Perform. Constr. Facil. 31, 04017071 (2017). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001066

    Article  Google Scholar 

  47. Cheng, X.; Jing, W.; Gong, L.: Dynamic responses of a sliding base-isolated RLSS considering free surface liquid sloshing. KSCE J. Civ. Eng. 00, 1–13 (2018). https://doi.org/10.1007/s12205-018-0154-z

    Article  Google Scholar 

  48. Jing, W.; Cheng, X.: Dynamic responses of sliding isolation concrete liquid storage tank under far-field long-period earthquake. J. Appl. Fluid Mech. 12, 907–919 (2019). https://doi.org/10.29252/JAFM.12.03.29180

    Article  Google Scholar 

  49. Ghallab, A.: Simulation of cracking in high concrete gravity dam using the extended finite elements by ABAQUS. Am. J. Mech. Appl. 8, 7 (2020). https://doi.org/10.11648/j.ajma.20200801.12

    Article  Google Scholar 

  50. Reyes, J.C.; Kalkan, E.: How many records should be used in an ASCE/SEI-7 ground motion scaling procedure? Earthq. Spectra 28, 1223–1242 (2012). https://doi.org/10.1193/1.4000066

    Article  Google Scholar 

  51. Goudarzi, M.A.; Danesh, P.N.: Numerical investigation of a vertically baffled rectangular tank under seismic excitation. J. Fluids Struct. 61, 450–460 (2016). https://doi.org/10.1016/j.jfluidstructs.2016.01.001

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contributions in the presented study.

Corresponding author

Correspondence to Ehsan Noroozinejad Farsangi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vern, S., Shrimali, M.K., Bharti, S.D. et al. Seismic Control of Base-Isolated Liquid Storage Tanks Subjected to Bi-directional Strong Ground Motions. Arab J Sci Eng 47, 4511–4530 (2022). https://doi.org/10.1007/s13369-021-06171-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06171-9

Keywords

Navigation