Skip to main content
Log in

Stress-Induced Uphill Diffusion with Interfacial Contact Loss in Solid-State Electrodes

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

We simulate the mechanical–chemical coupling during delithiation and relaxation of a cathode in a solid-state lithium-ion battery. Contact loss at the interface between the active particle and the solid electrolyte is considered. Uphill diffusion is observed during delithiation and relaxation. This phenomenon is explained by analyzing the total chemical potential and its two components. Contact loss at the interface greatly influences the stress and stress gradient in the active particle. As delithiation continues, the stress and stress gradient grow considerably, and the mechanical part of the total chemical potential becomes dominant over the chemical part of it. In the latter stage of delithiation, the influence of the incomplete interfacial constraint on the stress becomes dominant, while the effect of the concentration gradient becomes negligible. After relaxation, the concentration and stress gradients increase in a particle with contact loss. The influence of the degree of contact loss on the mechanical–chemical coupling is investigated. The overall tensile stress in the active particle increases with decreasing contact loss, causing a sharp decrease in local concentration. We also check the effect of the elastic modulus of the solid electrolyte on the coupling of the active material. A rigid solid electrolyte with a higher elastic modulus more strongly restricts the active particle, leading to a higher tensile stress, a larger stress gradient, and a greater concentration gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ding Y, Cano ZP, Yu A, et al. Automotive Li-ion batteries: current status and future perspectives. Electrochem Energ Rev. 2019;2:128.

  2. Choi J, Aurbach D. Promise and reality of post-lithium–ion batteries with high energy densities. Nat Rev Mater. 2016;1(6):359–67.

    Google Scholar 

  3. Hu YS. Batteries: getting solid. Nat Energy. 2016;1(6):652–7.

    Google Scholar 

  4. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359–67.

    Article  Google Scholar 

  5. Deng J, Bae C, Denlinger A, Miller T. Electric vehicles batteries: requirements and challenges. Joule. 2020;4(5):511–5.

    Article  Google Scholar 

  6. Zhang Z, Hu L, Wu H, Wei W, Koh M, Redfern PC, et al. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ Sci. 2013;6(8):1806–10.

    Article  Google Scholar 

  7. Li H. Practical evaluation of Li-ion batteries. Joule. 2019;3(6):911–4.

  8. Wu F, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev. 2020;49(7):1569–614.

    Article  Google Scholar 

  9. Zhang Q, Yao X, Zhang H, Zhang L, Xu X. Research progress on interfaces of all solid state lithium batteries. Energy Storage Sci Tech. 2016;5(7):659–67.

    Google Scholar 

  10. Han X, Gong Y, Fu K, He X, Gregory TH, Dai J, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater. 2017;16(7):572–9.

    Article  Google Scholar 

  11. Dzmitry H, Arved ER, Nico K, Stefan S, Sabine S, Yuki K, et al. The influence of void space on ion transport in a composite cathode for all-solid-state batteries. J Power Sources. 2018;396:363–70.

    Article  Google Scholar 

  12. Zhang W, Daniel S, Tobias A, Ingo M, Raimund K, Ricardo P, et al. (Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. J Mater Chem A. 2017;5(20):9929–36.

    Article  Google Scholar 

  13. Shingo O, Juntaro S, Yusuke Y, Yuki K, Takao T, Takahiko A. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery. J Power Sources. 2014;265:40–4.

    Article  Google Scholar 

  14. Atsushi S, Akitoshi H, Masahiro T. Interfacial observation between \(\text{LiCoO}_{{2}}\) electrode and \(\text{ Li}_{{2}}\text{ S-P}_{{2}}\text{ S}_{{5}}\) solid electrolytes of all-solid-state lithium secondary batteries using Transmission Electron Microscopy. Chem Mater. 2010;22(5):949–56.

  15. Mina Z, Monica B, Pedro PA, Venkataraman T. X-ray Photoelectron Spectroscopy and AC impedance spectroscopy studies of Li-La-Zr-O solid electrolyte thin film/\(\text{ LiCoO}_{\rm 2}\) cathode interface for all-solid-state lithium batteries. J Electrochem Soc. 2017;164(8):A1133–9.

    Google Scholar 

  16. Haruyama J, Sodeyama K, Han L, Takada K, Tateyama Y. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem Mater. 2014;26(14):4248–55.

    Article  Google Scholar 

  17. Nie K, Hong Y, Qiu J, Li Q, Yu X, Li H, Chen L, et al. Interfaces between cathode and electrolyte in solid state lithium batteries: challenges and perspectives. Front Chem. 2018;6:616.

    Article  Google Scholar 

  18. Devaux D, Harry KJ, Parkinson DY, Yuan R, Hallinan DT, Macdowell AA, et al. Failure mode of lithium metal batteries with a block copolymer electrolyte analyzed by X-Ray Microto mography. J Electrochem Soc. 2015;162(7):A1301–9.

    Article  Google Scholar 

  19. Koerver R, Dursun I, Leichtwei T, Dietrich C, Zhang W, Binder J, et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem Mater. 2017;29:55745582.

    Article  Google Scholar 

  20. Goodenough JB. Evolution of strategies for modern rechargeable batteries. Acc Chem Res. 2012;46(7):10531061.

    Google Scholar 

  21. Zhang W, Richter FH, Culver SP, Leichtwei T, Janek J, Dietrich C, et al. Degradation mechanisms at the \(\text{ Li}_{10}\text{ GeP } _{{\rm 2}}\text{ S}_{\rm 12}\)/\(\text{ LiCoO}_{{\rm 2}}\) cathode interface in an all-solid-state lithium ion battery. ACS Appl Mater Interfaces. 2018;10(26):2222622236.

  22. Haftbaradaran H, Gao H, Curtin WA. A surface locking instability for atomic intercalation into a solid electrode. Appl Phys Lett. 2010;96(9):091909-1.

  23. Song YC, Shao XJ, Guo ZS, Zhang JQ. Role of material properties and mechanical constraint on stress-assisted diffusion in plate electrodes of lithium ion batteries. J Phys D. 2013;46(10): 105307.

  24. Yin J, Shao XJ, Lu B, Song YC, Zhang JQ. Two-way coupled analysis of lithium diffusion and diffusion induced finite elastoplastic bending of bilayer electrodes in lithium-ion batteries. Appl Math Mech-Engl. 2018;39(11):41–60.

    Article  MathSciNet  Google Scholar 

  25. Christensen J, Newman J. Stress generation and fracture in lithium insertion materials. J Solid State Electr. 2006;10(7):293–319.

    Article  Google Scholar 

  26. Cheng YT, Verbrugge MW. Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J Power Sources. 2009;190(2):453–60.

    Article  Google Scholar 

  27. Korsunsky AM, Tan S, Song B. Explicit formulae for the internal stress in spherical particles of active material within lithium ion battery cathodes during charging and discharging. Mater Des. 2015;69:247–52.

    Article  Google Scholar 

  28. Zhang X, Shyy W, Sastry AM. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J Electrochem Soc. 2007;154(10):A910–6.

  29. Bistri D, Afshar A, Leo C. Modeling the chemo-mechanical behavior of all-solid-state batteries: a review. Meccanica. 2020;56:1523–54.

    Article  Google Scholar 

  30. Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y, Xu BX. A review on modeling of electro-chemo-mechanics in lithium-ion batteries. J Power Sources. 2019;413(7):259–83.

    Article  Google Scholar 

  31. Renganathan S, Sikha G, Santhanagopalan S, White RE. Theoretical analysis of stresses in a lithium–ion cell. J Electrochem Soc. 2010;157(4):A155A163.

  32. Sarkar A, Shrotriya P, Chandra A. Simulation-driven selection of electrode materials based on mechanical performance for lithium-ion battery. Materials. 2019;12(7):831.

  33. Santhanagopalan D, Qian D, Mcgilvray T, Wang Z, Wang F, Camino F, et al. Interface limited lithium transport in solid-state batteries. J Phys Chem Lett. 2014;5(4):298–303.

    Article  Google Scholar 

  34. Herbert EG, Tenhaeff WE, Dudney NJ, Pharr GM. Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films. 2011;520(1):413–8.

    Article  Google Scholar 

  35. Cho YH, Wolfenstine J, Rangasamy E, Kim H, Choe H, Sakamoto J. Mechanical properties of the solid Li-ion conducting electrolyte: \(\text{ Li}_{{.33}}\text{ La}_{{.57}}\text{ TiO}_{{3}}\). J Mater Sci. 2012;47(16):5970-5977.

  36. Ni JE, Case ED, Sakamoto JS, Rangasamy E, Wolfenstine JB. Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet. J Mater Sci. 2012;47(23):7978–85.

    Article  Google Scholar 

  37. Sakuda A, Hayashi A, Takigawa Y, Higashi K, Tatsumisago M. Evaluation of elastic modulus of \(\text{ Li}_{{2}}\text{ S }--\text{ P}_{{2}}\text{ S}_{{5}}\) glassy solid electrolyte by ultrasonic sound velocity measurement and compression test. J Ceram Soc Jpn. 2013;121(1419):946–9.

  38. Mcgrogan FP, Swamy T, Bishop SR, Eggleton E, Porz L, Chen X, et al. Compliant yet brittle mechanical behavior of \(\text{ Li}_{{2}}\text{ S-P}_{{2}}\text{ S}_{{5}}\) Lithium-Ion-Conducting solid electrolyte. Adv Energy Mater. 2017;7(12):1602011.

  39. Wang ZQ, Wu MS, Liu G, Lei XL, Xu B, Ouyang CY. Elastic properties of new solid state electrolyte material \(\text{ Li}_{{10}}\text{ GeP}_{{2}}\text{ S}_{{12}}\): a study from first-principles calculations. Int J Electrochem Sci. 2014;9(4):562–8.

  40. Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type \(\text{ Li}_{{7}}\text{ La}_{{3}}\text{ Zr}_{{2}}\text{ O}_{\rm 12}\). Angew Chem Int Ed. 2007;38(50):7778;7781.

  41. Knauth P. Inorganic solid Li ion conductors: an overview. Solid State Ionics. 2019;180(14–16):911–6.

  42. Sakuda A, Hayashi A, Tatsumisago M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci Rep. 2013;3:2261.

    Article  Google Scholar 

  43. Janek J, Zeier WG. A solid future for battery development. Nat Energy. 2016;1(9):16141.

    Article  Google Scholar 

  44. Lu B, Ning CQ, Shi DX, Zhao YF, Zhang JQ. Review on electrode-level fracture in lithium-ion batteries. Chin Phys B. 2020;29(4): 026201.

  45. Deng Z, Wang Z, Chu IH, Luo J, Ong SP. Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J Electrochem Soc. 2016;163(4):A67–74.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12072183, 11872236, 11702164, and 11702166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Shi, D., Lu, B. et al. Stress-Induced Uphill Diffusion with Interfacial Contact Loss in Solid-State Electrodes. Acta Mech. Solida Sin. 35, 113–128 (2022). https://doi.org/10.1007/s10338-021-00274-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00274-4

Keywords

Navigation