Skip to main content
Log in

Interfacial Contact Model in a Dense Network of Elastic Materials

  • Research Articles
  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

We consider a dense network of elastic materials modeled by a dense network of elastic disks. More specifically, we consider a dense network of elastic disks in the unit disk \(D(0,1)\) of \(\mathbb{R}^{2}\) obtained from an Apollonian packing of elastic circular disks by removing disks of small sizes. We suppose that the disks are pressed against each other to form small rectilinear contact zones where a perfect adhesion occurs on thinner zones. We use \(\Gamma\)-convergence methods in order to study the asymptotic behavior of the structure with respect to a vanishing parameter describing the thickness of the small perfect contact lines between materials. We derive an effective boundary condition on the residual fractal interface obtained by removing the Apollonian network of disks from \(D(0,1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Anishchik and N. N. Medvedev, “Three-dimensional Apollonian packing as a model for dense granular systems”, Phys. Rev. Lett., 75 (1995), 4314–4317.

    Article  Google Scholar 

  2. H. Attouch, Variational convergence for functions and operators, Appl. Math. Series, Pitman, Boston–London–Melbourne, 1984.

    MATH  Google Scholar 

  3. Y. Ben-Zion and C. G. Sammis, “Characterization of fault zones”, Pure and Applied Geophysics, 160 (2003), 677–715.

    Article  Google Scholar 

  4. D. W. Boyd, “The residual set dimension of Apollonian packing”, Mathematika, 20 (1973), 170–174.

    Article  MathSciNet  Google Scholar 

  5. R. Capitanelli, M. R. Lancia, and M. A. Vivaldi, “Insulating layers of fractal type”, Differential Integral Equations, 26:9/10 (2013), 1055–1076.

    MathSciNet  MATH  Google Scholar 

  6. G. Dal Maso, An Introduction to \(\Gamma \)-convergence, Progress in Nonlinear Differential Equations and Applications, vol. 8, Birkhäuser, Basel, 1993.

    Book  Google Scholar 

  7. M. El Jarroudi, “Asymptotic analysis of contact problems between an elastic material and thin-rigid plates”, Appl. Anal., 89:5 (2010), 693–715.

    Article  MathSciNet  Google Scholar 

  8. M. El Jarroudi and M. Er-Riani, “Homogenization of elastic materials containing self-similar microcracks”, Quart. J. Mech. Appl. Math, 72:2 (2019), 131–155.

    Article  MathSciNet  Google Scholar 

  9. M. El Jarroudi and A. Brillard, “Asymptotic behaviour of contact problems between two elastic materials through a fractal interface”, J. Math. Pures Appl., 89:5 (2008), 505–521.

    Article  MathSciNet  Google Scholar 

  10. K. Falconer, Techniques in Fractal Geometry, J. Wiley & Sons, Chichester, 1997.

    MATH  Google Scholar 

  11. H. J. Herrmann, G. Mantica, and D. Bessis, “Space-filling bearings”, Phys. Rev. Lett., 65:26 (1990), 3223–3226.

    Article  MathSciNet  Google Scholar 

  12. H. Hertz, “Über die berührung fester elastischer körper”, J. Rein. Angew. Math., 92 (1882), 156–171.

    MATH  Google Scholar 

  13. P. W. Jones, “Quasiconformal mappings and extendability of functions in Sobolev spaces”, Acta Math., 147:1–2 (1981), 71–88.

    Article  MathSciNet  Google Scholar 

  14. A. Jonsson and H. Wallin, “Boundary value problems and Brownian motion on fractals”, Chaos Solitons Fractals, 8:2 (1997), 191–205.

    Article  MathSciNet  Google Scholar 

  15. J. C. Kim, K. H. Auh, and D. M. Martin, “Multi-level particle packing model of ceramic agglomerates”, Model. Simul. Mater. Sci. Eng., 8 (2000), 159–168.

    Article  Google Scholar 

  16. M. R. Lancia, “A transmission problem with a fractal interface”, Z. Anal. Anwend., 21:1 (2002), 113–133.

    Article  MathSciNet  Google Scholar 

  17. C. Marone, C. B. Raleigh, and C. H. Scholz, “Frictional behavior and constitutive modeling of simulated fault gouge”, J. Geoph. Res., 95:B5 (1990), 7007–7025.

    Article  Google Scholar 

  18. R. D. Mauldin and M. Urbański, “Dimension and measures for a curvilinear Sierpinski gasket or Apollonian packing”, Adv. Math., 136:1 (1998), 26–38.

    Article  MathSciNet  Google Scholar 

  19. U. Mosco and M. A. Vivaldi, “Fractal reinforcement of elastic membranes”, Arch. Ration. Mech. Anal., 194 (2009), 49–74.

    Article  MathSciNet  Google Scholar 

  20. U. Mosco and M. A. Vivaldi, “Thin fractal fibers”, Math. Meth. Appl. Sci., 36:15 (2013), 2048–2068.

    MathSciNet  MATH  Google Scholar 

  21. N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity, Noordhoff, Groningen, 1963.

    MATH  Google Scholar 

  22. S. Roux, A. Hansen, and H. J. Herrmann, “A model for gouge deformation: Implication for remanent magnetization”, Geoph. Res. Lett., 20:14 (1993), 1499–1502.

    Article  Google Scholar 

  23. V. S. Rychkov, “Linear extension operators for restrictions of function spaces to irregular open sets”, Studia Math., 140:2 (2000), 141–162.

    Article  MathSciNet  Google Scholar 

  24. C. G. Sammis and R. L. Biegel, “Fractals, fault-gouge, and friction”, Pure and Applied Geophysics, 131:1/2 (1989).

    Google Scholar 

  25. C. H. Scholz, The Mechanics of Earthquakes and Faulting, Cambridge University Press, Cambridge, 2002.

    Book  Google Scholar 

  26. S. J. Steacy and C. G. Sammis, “An automaton for fractal patterns of fragmentation”, Nature, 353 (1991), 250–252.

    Article  Google Scholar 

  27. D. Sullivan, “Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups”, Acta. Math., 153:3–4 (1984), 259–277.

    Article  MathSciNet  Google Scholar 

  28. D. M. Walker and A. Tordesillas, Topological evolution in dense granular materials: A complex networks perspective, 47:5 (2010), 624–639.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Abouelhanoune or M. El Jarroudi.

Additional information

Translated from Funktsional'nyi Analiz i ego Prilozheniya, 2021, Vol. 55, pp. 3–19 https://doi.org/10.4213/faa3747.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouelhanoune, Y., El Jarroudi, M. Interfacial Contact Model in a Dense Network of Elastic Materials. Funct Anal Its Appl 55, 1–14 (2021). https://doi.org/10.1134/S0016266321010019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016266321010019

Keywords

Navigation