Skip to main content
Log in

Fabrication of N-doped carbon nanobelts from a polypyrrole tube by confined pyrolysis for supercapacitors

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In this present work, N-doped carbon nanobelts (N-CNBs) were prepared by a confined-pyrolysis approach and the N-CNBs were derived from a polypyrrole (Ppy) tube coated with a compact silica layer. The silica layer provided a confined space for the Ppy pyrolysis, thereby hindering the rapid overflow of pyrolysis gas, which is the activator for the formation of carbonaceous materials. At the same time, the confined environment can activate the carbon shell to create a thin wall and strip the carbon tube into belt morphology. This process of confined pyrolysis realizes self-activation during the pyrolysis of Ppy to obtain the carbon nanobelts without adding any additional activator, which reduces pollution and preparation cost. In addition, this approach is simple to operate and avoids the disadvantages of other methods that consume time and materials. The as-prepared N-CNB shows cross-linked nanobelt morphology and a rich porous structure with a large specific surface area. As supercapacitor electrode materials, the N-CNB can present abundant active sites, and exhibits a specific capacitance of 246 F·g−1, and excellent ability with 95.44% retention after 10000 cycles. This indicates that the N-CNB is an ideal candidate as a supercapacitor electrode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma F X, Yu L, Xu C Y, Lou X W. Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energy & Environmental Science, 2016, 9(3): 862–866

    Article  CAS  Google Scholar 

  2. Ouyang T, Cheng K, Yang F, Zhou L, Zhu K, Ye K, Wang G, Cao D. From biomass with irregular structures to 1D carbon nanobelts: a stripping and cutting strategy to fabricate high performance supercapacitor materials. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(28): 14551–14561

    Article  CAS  Google Scholar 

  3. Zhai T, Wan L M, Sun S, Chen Q, Sun J, Xia Q Y, Xia H. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Advanced Materials, 2017, 29(7): 1604167.1–1604167.8

    Article  CAS  Google Scholar 

  4. Lin T, Chen I W, Liu F, Yang C, Bi H, Xu F, Huang F. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science, 2015, 350(6267): 1508–1513

    Article  CAS  PubMed  Google Scholar 

  5. Wu D, Li Z, Zhong M, Kowalewski T, Matyjaszewski K. Templated synthesis of nitrogen-enriched nanoporous carbon materials from porogenic organic precursors prepared by ATRP. Angewandte Chemie International Edition, 2014, 53(15): 3957–3960

    Article  CAS  PubMed  Google Scholar 

  6. Park W I, Yi G, Kim M Y, Pennycook S J. ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Advanced Materials, 2002, 14(24): 1841–1843

    Article  CAS  Google Scholar 

  7. Chen D, Ye J H. Selective-synthesis of high-performance single-crystalline Sr2Nb2O7 nanoribbon and SrNb2O6 nanorod photocatalysts. Chemistry of Materials, 2009, 21(11): 2327–2333

    Article  CAS  Google Scholar 

  8. Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P, Ebrahimi M, Mai W, Wong C P, Wang Z L. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Letters, 2014, 14(2): 731–736

    Article  CAS  PubMed  Google Scholar 

  9. Feng X J, Shankar K, Varghese O K, Paulose M, Latempa T J, Grimes C A. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Letters, 2008, 8(11): 3781–3786

    Article  CAS  PubMed  Google Scholar 

  10. Yu X, Yang S, Zhang B, Shao D, Dong X, Fang Y, Li Z, Wang H. Controlled synthesis of SnO2@carbon core-shell nanochains as high-performance anodes for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21(33): 12295–12302

    Article  CAS  Google Scholar 

  11. Zou J, Tu W, Zeng S Z, Yao Y, Zhang Q, Wu H, Lan T, Liu S, Zeng X. High-performance supercapacitors based on hierarchically porous carbons with a three-dimensional conductive network structure. Dalton Transactions (Cambridge, England), 2019, 48 (16): 5271–5284

    Article  CAS  Google Scholar 

  12. Su C C, Pei C J, Wu B X, Qian J F, Tan Y W. Highly doped carbon nanobelts with ultrahigh nitrogen content as high-performance supercapacitor materials. Small, 2017, 13(29): 1700834

    Article  CAS  Google Scholar 

  13. Qi X S, Yang Y, Zhong W, Qin C, Deng Y, Au C, Du Y W. Simultaneous synthesis of carbon nanobelts and carbon/Fe-Cu hybrids for microwave absorption. Carbon, 2010, 48(12): 3512–3522

    Article  CAS  Google Scholar 

  14. Jiao L Y, Zhang L, Wang X R, Diankov G, Dai H J. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458 (7240): 877–880

    Article  CAS  PubMed  Google Scholar 

  15. Pachfule P, Shinde D, Majumder M, Xu Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nature Chemistry, 2016, 8(7): 718–724

    Article  CAS  PubMed  Google Scholar 

  16. Elías A L, Botello-Méndez A R, Meneses-Rodríguez D, Jehová González V, Ramírez-González D, Ci L J, Muñoz-Sandoval E, Ajayan P M, Terrones H, Terrones M. Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Letters, 2010, 10(2): 366–372

    Article  PubMed  CAS  Google Scholar 

  17. Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458(7240): 872–876

    Article  CAS  PubMed  Google Scholar 

  18. Cano-Márquez A G, Rodríguez-Macías F J, Campos-Delgado J, Espinosa-González C G, Tristán-López F, Ramírez-González D, Cullen D A, Smith D J, Terrones M, Vega-Cantú Y I. Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Letters, 2009, 9(4): 1527–1533

    Article  PubMed  CAS  Google Scholar 

  19. Zheng C, Zhou X F, Cao H L, Wang G H, Liu Z P. Edge-enriched porous graphene nanoribbons for high energy density super-capacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(20): 7484

    Article  CAS  Google Scholar 

  20. Molina-Sabio M, Gonzalez M T, Rodriguez-Reinoso F, Sepúlveda-Escribano A. Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon. Carbon, 1996, 34 (4): 505–509

    Article  CAS  Google Scholar 

  21. Fukuyama H, Terai S. Preparing and characterizing the active carbon produced by steam and carbon dioxide as a heavy oil hydrocracking catalyst support. Catalysis Today, 2008, 130(2–4): 382–388

    Article  CAS  Google Scholar 

  22. Xu Y, Zhang C L, Zhou M, Fu Q, Zhao C X, Wu M H, Lei Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nature Communications, 2018, 9(1): 1720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Toles C A, Marshall W E, Wartelle L H, McAloon A. Steam- or carbon dioxide-activated carbons from almond shells: physical, chemical and adsorptive properties and estimated cost of production. Bioresource Technology, 2000, 75(3): 197–203

    Article  CAS  Google Scholar 

  24. Yang L, Huang T, Jiang X, Jiang W J. Effect of steam and CO2 activation on characteristics and desulfurization performance of pyrolusite modified activated carbon. Adsorption, 2016, 22(8): 1099–1107

    Article  CAS  Google Scholar 

  25. Wang Z H, Xiong X Q, Qie L, Huang Y H. High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole. Electrochimica Acta, 2013, 106: 320–326

    Article  CAS  Google Scholar 

  26. Guo F M, Xu R Q, Cui X, Zhang L, Wang K L, Yao Y W, Wei J Q. High performance of stretchable carbon nanotube-polypyrrole fiber supercapacitors under dynamic deformation and temperature variation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(23): 9311–9318

    CAS  Google Scholar 

  27. Cheng P, Li T, Yu H, Zhi L, Liu Z H, Lei Z B. Biomass-derived carbon fiber aerogel as binder-free electrode for high-rate super-capacitor. Journal of Physical Chemistry C, 2016, 120(4): 2079–2086

    Article  CAS  Google Scholar 

  28. Chen L F, Huang Z H, Liang H W, Gao H L, Yu S H. Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Advanced Functional Materials, 2014, 24(32): 5104–5111

    Article  CAS  Google Scholar 

  29. Wu Q, Xu Y X, Yao Z Y, Liu A R, Shi G Q. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano, 2010, 4(4): 1963–1970

    Article  CAS  PubMed  Google Scholar 

  30. Ren J, Li L, Chen C, Chen X L, Cai Z B, Qiu L B, Wang Y G, Zhu X R, Peng H S. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Advanced Materials, 2013, 25(8): 1155–1159

    Article  CAS  PubMed  Google Scholar 

  31. Liu H J, Wang X M, Cui W J, Dou Y Q, Zhao D Y, Xia Y Y. Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. Journal of Materials Chemistry, 2010, 20(20): 4223–4230

    Article  CAS  Google Scholar 

  32. Tai Z X, Yan X B, Lang J W, Xue Q J. Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets. Journal of Power Sources, 2012, 199: 373–378

    Article  CAS  Google Scholar 

  33. Islam M S, Deng Y, Tong L, Faisal S N, Roy A K, Minett A I, Gomes V G. Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: towards next generation aerospace composites and energy storage applications. Carbon, 2016, 96: 701–710

    Article  CAS  Google Scholar 

  34. Du F, Yu D, Dai L, Ganguli S, Varshney V, Roy A K. Preparation of tunable 3D pillared carbon nanotube-graphene networks for highperformance capacitance. Chemistry of Materials, 2011, 23(21): 4810–4816

    Article  CAS  Google Scholar 

  35. Yan Z, Ma L L, Zhu Y, Lahiri I, Hahm M G, Liu Z, Yang S B, Xiang C S, Lu W, Peng Z W, Sun Z, Kittrell C, Lou J, Choi W, Ajayan P M, Tour J M. Three-dimensional metal-graphene-nanotube multifunctional hybrid materials. ACS Nano, 2013, 7(1): 58–64

    Article  CAS  PubMed  Google Scholar 

  36. Perera S D, Patel B, Nijem N, Roodenko K, Seitz O, Ferraris J P, Chabal Y J, Jr Balkus K J. Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors. Advanced Energy Materials, 2011, 1(5): 1–10

    Article  CAS  Google Scholar 

  37. Subramanian V, Luo C, Stephan A M, Nahm K S, Thomas S, Wei B. Supercapacitors from activated carbon derived from banana fibers. Journal of Physical Chemistry C, 2007, 111(20): 7527–7531

    Article  CAS  Google Scholar 

  38. Barranco V, Lillo Rodenas M A, Linares Solano A, Oya A, Pico F, Ibanez J, Agullo-Rueda F, Amarilla J M, Rojo J M. Amorphous carbon nanofibers and their activated carbon nanofibers as super-capacitor electrodes. Journal of Physical Chemistry C, 2010, 114 (22): 10302–10307

    Article  CAS  Google Scholar 

  39. Ra E J, Raymundo-Piñero E, Lee Y H, Béguin F. High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon, 2009, 47(13): 2984–2992

    Article  CAS  Google Scholar 

  40. Xing W, Qiao S Z, Ding R G, Li F, Lu G Q, Yan Z F, Cheng H M. Superior electric double layer capacitors using ordered mesoporous carbons. Carbon, 2006, 44(2): 216–224

    Article  CAS  Google Scholar 

  41. Mao B S, Wen Z, Bo Z, Chang J, Huang X, Chen J. Hierarchical nanohybrids with porous CNT-networks decorated crumpled graphene balls for supercapacitors. ACS Applied Materials & Interfaces, 2014, 6(12): 9881–9889

    Article  CAS  Google Scholar 

  42. Guo H L, Gao Q M. Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. Journal of Power Sources, 2009, 186(2): 551–556

    Article  CAS  Google Scholar 

  43. Chen P, Yang J J, Li S S, Wang Z, Xiao T Y, Qian Y H, Yu S H. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy, 2013, 2(2): 249–256

    Article  CAS  Google Scholar 

  44. Razaq A, Nyholm L, Sjödin M, Strømme M, Mihranyan A. Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes. Advanced Energy Materials, 2012, 2(4): 445–454

    Article  CAS  Google Scholar 

  45. Lei Z B, Zhang J T, Zhao X S. Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric super-capacitor electrodes. Journal of Materials Chemistry, 2011, 22(1): 153–160

    Article  Google Scholar 

  46. Burke A R. R&D considerations for the performance and application of electrochemical capacitors. Electrochimica Acta, 2007, 53(3): 1083–1091

    Article  CAS  Google Scholar 

  47. Chang X, Ma Y, Yang M, Xing T, Tang L, Chen T, Guo Q, Zhu X, Liu J, Xia H. In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage. Energy Storage Materials, 2019, 23: 358–366

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (Grant No. 21676070), Hebei Province Introduction of Foreign Intelligence Projects (2018), Beijing National Laboratory for Molecular Sciences, Hebei Science and Technology Project (Grant Nos. 20544401D and 20314401D), Tianjin Science and Technology Project (Grant No. 19YFSLQY00070), CAS Key Laboratory of Carbon Materials (Grant No. KLCMKFJJ2007), Hebei Province 2020 Central Leading Local Science and Technology Development Fund Project (Grant No. 206Z4406G).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Du or Aibing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Lv, H., Du, J. et al. Fabrication of N-doped carbon nanobelts from a polypyrrole tube by confined pyrolysis for supercapacitors. Front. Chem. Sci. Eng. 15, 1312–1321 (2021). https://doi.org/10.1007/s11705-020-2033-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-2033-7

Keywords

Navigation