Skip to main content
Log in

Multicomponent Reactions Based on In Situ Generated Isocyanides for the Construction of Heterocycles

  • REVIEWS
  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Isocyanides have a long history, high versatility and have been used widely in various research fields, especially in multicomponent synthesis. Despite their many applications, isocyanides are strongly fetid, labile, and suspect of toxicity, thus researchers worldwide are hesitant to use them. The in situ generation and capturing synthetic protocols avoid environmental exposure and thus would be the sustainable alternative for the conventional use of isocyanides. This issue is consequently the main focus of the present review. The literature reports published in 2005–2020 are analyzed and categorized based on the class of heterocycles. The reaction conditions along with proposed mechanisms providing conventional approaches and novel elements are discussed aiming to deliver the readers an easy understanding of in situ versions of isocyanide-based multicomponent reactions and to provide insights for further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  1. Dömling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168.

  2. Isocyanide Chemistry: Applications in Synthesis and Material Science; Nenajdenko, V. G., Ed.; Wiley-VCH: Weinheim, 2012.

  3. Kruithof, A.; Ruijter, E.; Orru, R. V. A. Chem.–Asian J. 2015, 10, 508.

  4. Giustiniano, M.; Basso, A.; Mercalli, V.; Massarotti, A.; Novellino, E.; Tron, G. C.; Zhu, J. Chem. Soc. Rev. 2017, 46, 1295.

    Article  CAS  PubMed  Google Scholar 

  5. Bode, M. L.; Gravestock, D.; Rousseau, A. L. Org. Prep. Proced. Int. 2016, 48, 89.

    Article  CAS  Google Scholar 

  6. Lygin, A. V.; de Meijere, A. Angew. Chem., Int. Ed. 2010, 49, 9094.

  7. Boyarskiy, V. P.; Bokach, N. A.; Luzyanin, K. V.; Kukushkin, V. Y. Chem. Rev. 2015, 115, 2698.

    Article  CAS  PubMed  Google Scholar 

  8. Vlaar, T.; Ruijter, E.; Maes, B. U. W.; Orru, R. V. A. Angew. Chem., Int. Ed. 2013, 52, 7084.

  9. Salehi, P.; Shiri, M. Adv. Synth. Catal. 2019, 361, 118.

    Article  CAS  Google Scholar 

  10. Barybin, M. V. Coord. Chem. Rev. 2010, 254, 1240.

    Article  CAS  Google Scholar 

  11. Dömling, A. Chem. Rev. 2006, 106, 17.

    Article  PubMed  CAS  Google Scholar 

  12. Mironov, M. A. Russ. J. Gen. Chem. 2010, 80, 2628. [Original russian text is published in Ross. Khim. Zh. 2009, 53(5), 116.]

  13. Biggs-Houck, J. E.; Younai, A.; Shaw, J. T. Curr. Opin. Chem. Biol. 2010, 14, 371.

    Article  CAS  PubMed  Google Scholar 

  14. Nenajdenko, V. G. Russ. Chem. Rev. 2020, 89, 1274. [Usp. Khim. 2020, 89, 1274.]

  15. Bariwal, J.; Kaur, R.; Voskressensky, L. G.; Van der Eycken, E. V. Front. Chem. 2018, 6, 557.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sharma, U. K.; Sharma, N.; Vachhani, D. D.; Van der Eycken, E. V. Chem. Soc. Rev. 2015, 44, 1836.

    Article  CAS  PubMed  Google Scholar 

  17. Zadsirjan, V.; Shiri, M.; Heravi, M. M.; Hosseinnejad, T.; Shintre, S. A.; Koorbanally, N. A. Res. Chem. Intermed. 2017, 43, 2119.

    Article  CAS  Google Scholar 

  18. Mohammadkhani, L.; Heravi, M. M. Mol. Diversity 2020, 24, 841.

    Article  CAS  Google Scholar 

  19. Shiri, M.; Bozorgpour-Savadjani, Z. J. Iran. Chem. Soc. 2015, 12, 389.

    Article  CAS  Google Scholar 

  20. Slobbe, P.; Ruijter, E.; Orru, R. V. A. MedChemComm 2012, 3, 1189.

    Article  CAS  Google Scholar 

  21. Akritopoulou-Zanze, I. Curr. Opin. Chem. Biol. 2008, 12, 324.

    Article  CAS  PubMed  Google Scholar 

  22. Passerini, M.; Simone, L. Gazz. Chim. Ital. 1921, 51, 126.

    CAS  Google Scholar 

  23. Andrade, C. K. Z.; Takada, S. C. S.; Suarez, P. A. Z.; Alves, M. B. Synlett 2006, 1539.

  24. Ugi, I. J. Prakt. Chem. 1997, 339, 499.

    Article  CAS  Google Scholar 

  25. Ugi, I. Angew. Chem., Int. Ed. 1982, 21, 810.

  26. Van Leusen, A. M.; Wildeman, J.; Oldenziel, O. H. J. Org. Chem. 1977, 42, 1153.

    Article  Google Scholar 

  27. Groebke, K.; Weber, L.; Mehlin, F. Synlett 1998, 661.

  28. Blackburn, C.; Guan, B.; Fleming, P.; Shiosaki, K.; Tsai, S. Tetrahedron Lett. 1998, 39, 3635.

    Article  CAS  Google Scholar 

  29. Bienaymé, H.; Bouzid, K. A Angew. Chem., Int. Ed. 1998, 37, 2234.

  30. Rudick, J. G.; Shaabani, S.; Dömling, A. Front. Chem. 2020, 7, 918.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sadjadi, S.; Heravi, M. M. Tetrahedron 2011, 67, 2707.

    Article  CAS  Google Scholar 

  32. Heravi, M. M.; Moghimi, S. J. Iran. Chem. Soc. 2011, 8, 306.

    Article  CAS  Google Scholar 

  33. Sadjadi, S.; Heravi, M. M.; Nazari, N. RSC Adv. 2016, 6, 53203.

    Article  CAS  Google Scholar 

  34. Heravi, M. M.; Nazari, N. Curr. Org. Chem. 2017, 21, 1440.

    CAS  Google Scholar 

  35. Heravi, M. M.; Mohammadkhani, L. Adv. Heterocycl. Chem. 2020, 131, 351.

    Article  CAS  Google Scholar 

  36. Mohammadkhani, L.; Heravi, M. M. Mol. Diversity 2020, 24, 841.

    Article  CAS  Google Scholar 

  37. Heravi, M. M.; Zadsirjan, V.; Dehghani, M.; Ahmadi, T. Tetrahedron 2018, 74, 3391.

    Article  CAS  Google Scholar 

  38. Boltjes, A.; Dömling, A. Eur. J. Org. Chem. 2019, 7007.

  39. Efimov, I. V.; Kulikova, L. N.; Zhilyaev, D. I.; Voskressensky, L. G. Eur. J. Org. Chem. 2020, 7284.

  40. Altundas, B.; Marrazzo, J.-P. R.; Fleming, F. F. Org. Biomol. Chem. 2020, 18, 6467.

    Article  CAS  PubMed  Google Scholar 

  41. Angelici, R. J. Catal. Sci. Technol. 2013, 3, 279.

    Article  CAS  Google Scholar 

  42. Bokach, N. A. Russ. Chem. Rev. 2010, 79, 89. [Usp. Khim. 2010, 79, 104.]

  43. Bouchoux, G. Mass Spectrom. Rev. 2018, 37, 533.

    Article  CAS  PubMed  Google Scholar 

  44. Mazzoni, R.; Marchetti, F.; Cingolani, A.; Zanotti, V. Inorganics 2019, 7, 25.

    Article  CAS  Google Scholar 

  45. Kaur, T.; Wadhwa, P.; Sharma, A. RSC Adv. 2015, 5, 52769.

    Article  CAS  Google Scholar 

  46. Lang, S. Chem. Soc. Rev. 2013, 42, 4867.

    Article  CAS  PubMed  Google Scholar 

  47. Ma, Z.; Ma, Z.; Zhang, D. Molecules 2018, 23, 2666.

    Article  PubMed Central  CAS  Google Scholar 

  48. Wang, H.; Xu, B. Chin. J. Org. Chem. 2015, 35, 588.

    Article  CAS  Google Scholar 

  49. Schwartz, E.; Koepf, M.; Kitto, H. J.; Nolte, R. J. M.; Rowan, A. E. Polym. Chem. 2011, 2, 33.

    Article  CAS  Google Scholar 

  50. Song, B.; Xu, B. Chem. Soc. Rev. 2017, 46, 1103.

    Article  CAS  PubMed  Google Scholar 

  51. La Spisa, F.; Tron, G.; El Kaïm, L. Synthesis 2014, 829.

  52. Tobisu, M.; Chatani, N. Chem. Lett. 2011, 40, 330.

    Article  CAS  Google Scholar 

  53. Nazeri, M. T.; Farhid, H.; Mohammadian, R.; Shaabani, A. ACS Comb. Sci. 2020, 22, 361.

    Article  CAS  PubMed  Google Scholar 

  54. Shiri, M.; Farajinia-Lehi, N.; Salehi, P.; Tanbakouchian, Z. Synthesis 2020, 3162.

  55. Shaabani, A.; Mohammadian, R.; Afshari, R.; Hooshmand, S. E.; Nazeri, M. T.; Javanbakht, S. Mol. Diversity 2020, 25, 1145.

    Article  CAS  Google Scholar 

  56. Shaabani, A.; Hooshmand, S. E. RSC Adv. 2016, 6, 58142.

    Article  CAS  Google Scholar 

  57. Mikherdov, A. S.; Novikov, A. S.; Boyarskiy, V. P.; Kukushkin, V. Y. Nat. Commun. 2020, 11, 2921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Golubev, P.; Krasavin, M. Tetrahedron Lett. 2018, 59, 3532.

    Article  CAS  Google Scholar 

  59. Liu, M. G.; Liu, N.; Xu, W. H.; Wang, L. Tetrahedron 2019, 75, 2748.

    Article  CAS  Google Scholar 

  60. Lieke, W. Justus Liebigs Ann. Chem. 1859, 112, 316.

    Article  Google Scholar 

  61. Zhang, X.; Evanno, L.; Poupon, E. Eur. J. Org. Chem. 2020, 1919.

  62. Fédou, N. M.; Parsons, P. J.; Viseux, E. M. E.; Whittle, A. J. Org. Lett. 2005, 7, 3179.

    Article  CAS  Google Scholar 

  63. El Kaïm, L.; Grimaud, L.; Schiltz, A. Synlett 2009, 1401.

  64. El Kaïm, L.; Grimaud, L.; Schiltz, A. Org. Biomol. Chem. 2009, 7, 3024.

    Article  CAS  Google Scholar 

  65. Ugi, I.; Meyr, R. Angew. Chem. 1958, 70, 702.

    Article  CAS  Google Scholar 

  66. Ugi, I.; Meyr, R. Chem. Ber. 1960, 93, 239.

    Article  CAS  Google Scholar 

  67. Sharma, S.; Maurya, R. A.; Min, K. I.; Jeong, G. Y.; Kim, D. P. Angew. Chem., Int. Ed. 2013, 52, 7564.

  68. Neochoritis, C. G.; Stotani, S.; Mishra, B.; Dömling, A. Org. Lett. 2015, 17, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Neochoritis, C. G.; Zarganes-Tzitzikas, T.; Stotani, S.; Dömling, A.; Herdtweck, E.; Khoury, K.; Dömling, A. ACS Comb. Sci. 2015, 17, 493.

    Article  CAS  PubMed  Google Scholar 

  70. Liu, N.; Chao, F.; Liu, M. G.; Huang, N. Y.; Zou, K.; Wang, L. J. Org. Chem. 2019, 84, 2366.

    Article  CAS  PubMed  Google Scholar 

  71. Guchhait, S. K.; Priyadarshani, G.; Chaudhary, V.; Seladiya, D. R.; Shah, T. M.; Bhogayta, N. P. RSC Adv. 2013, 3, 10867.

    Article  CAS  Google Scholar 

  72. Wang, Y.; Zhou, Y.; Song, Q. Chem. Commun. 2020, 56, 6106.

    Article  CAS  Google Scholar 

  73. Gedey, S.; Van der Eycken, J.; Fülöp, F. Org. Lett. 2002, 4, 1967.

    Article  CAS  PubMed  Google Scholar 

  74. Shiri, M.; Ranjbar, M.; Yasaei, Z.; Zamanian, F.; Notash, B. Org. Biomol. Chem. 2017, 15, 10073.

    Article  CAS  PubMed  Google Scholar 

  75. Kakkar, S.; Narasimhan, B. BMC Chem. 2019, 13, 16.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wang, L.; Ren, Z.-L.; Chen, M.; Ding, M.-W. Synlett 2014, 721.

  77. Neochoritis, C. G.; Zhao, T.; Dömling, A. Chem. Rev. 2019, 119, 1970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Buyck, T.; Wang, Q.; Zhu, J. J. Am. Chem. Soc. 2014, 136, 11524.

    Article  CAS  PubMed  Google Scholar 

  79. Heravi, M. M.; Baghernejad, B.; Oskooie, H. A. Tetrahedron Lett. 2009, 50, 767.

    Article  CAS  Google Scholar 

  80. Heravi, M. M.; Baghernejad, B.; Oskooie, H. A. Mol. Diversity 2009, 13, 395.

    Article  CAS  Google Scholar 

  81. Santos, C. M. M.; Silva, A. M. S. Prog. Heterocycl. Chem. 2018, 30, 427.

    Article  CAS  Google Scholar 

  82. Wang, L.; Guan, Z. -R.; Ding, M.-W. Org. Biomol. Chem. 2016, 14, 2413.

    Article  CAS  PubMed  Google Scholar 

  83. Banfi, L.; Basso, A.; Casuscelli, F.; Guanti, G.; Naz, F.; Riva, R.; Zito, P. Synlett 2010, 85.

  84. Santos, C. M. M.; Silva, A. M. S. Prog. Heterocycl. Chem. 2013, 25, 409.

    Article  CAS  Google Scholar 

  85. Yi, W.; Li, L.; Chen, H.; Ma, K.; Zhong, Y.; Chen, W.; Gao, H.; Zhou, Z. Org. Lett. 2018, 20, 6812.

    Article  CAS  PubMed  Google Scholar 

  86. O'Boyle, N. M.; Barrett, I.; Greene, L. M.; Carr, M.; Fayne, D.; Twamley, B.; Knox, A. J. S.; Keely, N. O.; Zisterer, D. M.; Meegan, M. J. J. Med. Chem. 2018, 61, 514.

    Article  CAS  PubMed  Google Scholar 

  87. Hamidi, H.; Heravi, M. M.; Tajbakhsh, M.; Shiri, M.; Oskooie, H. A.; Shintre, S. A.; Koorbanally, N. A. J. Iran. Chem. Soc. 2015, 12, 2205.

    Article  CAS  Google Scholar 

  88. Sangshetti, N. J.; Ahmad, A. S. A.; Khan, A. K. F.; Zaheer, Z. Mini.-Rev. Org. Chem. 2015, 12, 345.

    Article  CAS  Google Scholar 

  89. Ibarra, I. A.; Islas-Jácome, A.; González-Zamora, E. Org. Biomol. Chem. 2018, 16, 1402.

    Article  CAS  PubMed  Google Scholar 

  90. Bhat, S. I. ChemistrySelect 2020, 5, 8040.

    Article  CAS  Google Scholar 

  91. Devi, N.; Rawal, R. K.; Singh, V. Tetrahedron 2015, 71, 183.

    Article  CAS  Google Scholar 

  92. Guchhait, S. K.; Chaudhary, V. Org. Biomol. Chem. 2014, 12, 6694.

    Article  CAS  PubMed  Google Scholar 

  93. Golubev, P.; Pankova, A.; Krasavin, M. Tetrahedron Lett. 2019, 60, 1578.

    Article  CAS  Google Scholar 

  94. Xia, H.; Xu, S.; Hu, H.; An, J.; Li, C. RSC Adv. 2018, 8, 30875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhao, D.; Su, T.; Wang, Y.; Varma, R. S.; Len, C. Mol. Catal. 2020, 495, 111133.

    Article  CAS  Google Scholar 

  96. El Kaïm, L.; Grimaud, L.; Schiltz, A. Tetrahedron Lett. 2009, 50, 5235.

    Article  CAS  Google Scholar 

  97. Patil, P.; Ahmadian-Moghaddam, M.; Dömling, A. Green Chem. 2020, 22, 6902.

    Article  CAS  Google Scholar 

  98. Waibel, K. A.; Nickisch, R.; Möhl, N.; Seim, R.; Meier, M. A. R. Green Chem. 2020, 22, 933.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subrahmanya Ishwar Bhat or Majid M. Heravi.

Additional information

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2021, 57(7/8), 709–719

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, S.I., Kigga, M. & Heravi, M.M. Multicomponent Reactions Based on In Situ Generated Isocyanides for the Construction of Heterocycles. Chem Heterocycl Comp 57, 709–719 (2021). https://doi.org/10.1007/s10593-021-02972-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-021-02972-w

Keywords

Navigation