Skip to main content
Log in

Two-photon and Three-photon Fluorescence of Triton X-100 in the Ultraviolet Region

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We report, to our best knowledge, the first observation of two-photon and three-photon fluorescence of Triton X-100 (TX-100) in water and cyclohexane. The observed multiphoton fluorescence (MF) falls in the ultraviolet region 280-340nm as its one photon fluorescence does. Effects of excitation wavelengths and solution concentrations on the fluorescence spectra are investigated. We found the optimal excitation wavelength and solution concentration to obtain the strongest MF. For relatively weaker three-photon fluorescence, there exists fluctuation in its spectrum due to its small SNR. The peak wavelength is around 300nm and only varies slightly with the solution concentration, solvent type, and excitation wavelength, which is quite different from those of other luminophors. This work has extended the wave band of MF to the purple and ultraviolet regions of 280-340nm and study of TX-100 to nonlinear optics field. The results may be potentially applied in ultraviolet MF detection and in manufacturing ultraviolet multiphoton laser in the future. Although for the latter case, there is still a long way to go to enhance its fluorescence efficiency and cross section of stimulated emission beforehand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Richardson DR, Roy S, Gord JR (2017) Femtosecond, two-photon, planar laser-induced fluorescence of carbon monoxide in flames. Opt Lett 42(4):875. https://doi.org/10.1364/OL.42.000875

    Article  PubMed  CAS  Google Scholar 

  2. Cohoon GA, Kieu K, Norwood RA (2014) Observation of two-photon fluorescence for Rhodamine 6G in microbubble resonators. Opt Lett 39(11):3098–3101. https://doi.org/10.1364/OL.39.003098

    Article  PubMed  CAS  Google Scholar 

  3. Xu G, Hu D, Zhao X, Shao Z, Liu H, Tian Y (2007) Fluorescence upconversion properties of a class of improved pyridinium dyes induced by two-photon absorption. Opt Laser Technol 39(4):690–695. https://doi.org/10.1016/j.optlastec.2006.04.003

    Article  CAS  Google Scholar 

  4. Tang X-J, Wu L-Z, Zhang L-P, Tung C-H (2002) Two-photon-pumped frequency-upconverted yellow lasing in a novel dye solution. Chem Phys Lett 356(5–6):573–576. https://doi.org/10.1016/S0009-2614(02)00416-5

    Article  CAS  Google Scholar 

  5. He GS, Bhawalkar JD, Zhao CF, Park C-K, Prasad PN (1995) Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system. Opt Lett 20(23):2393–2395. https://doi.org/10.1364/OL.20.002393

    Article  PubMed  CAS  Google Scholar 

  6. Yang Q, Lin S, Xu L, Yang F, Yang Y, Pan L, Sun C, Li Y, Sun G, Jiang Z (2005) Observation of upconversion fluorescence and stimulated emission based on three-photon absorption. Appl Phys B 80(8):953–955. https://doi.org/10.1007/s00340-005-1842-1

    Article  CAS  Google Scholar 

  7. Pudavar E, Joshi MP, Prasad PN, Reinhardt BA (1999) High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single-photon readout. Appl Phys Lett 74(9):1338–1340. https://doi.org/10.1063/1.123543

    Article  CAS  Google Scholar 

  8. Strickler JH, Webb WW (1991) Three-dimensional optical data storage in refractive media by two-photon point excitation. Opt Lett 16(22):1780–1782. https://doi.org/10.1364/OL.16.001780

    Article  PubMed  CAS  Google Scholar 

  9. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76. https://doi.org/10.1126/science.2321027

    Article  PubMed  CAS  Google Scholar 

  10. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940. https://doi.org/10.1038/NMETH818

    Article  PubMed  CAS  Google Scholar 

  11. Rodriguez C, Liang YJ, Lu RW, Ji N (2018) Three-photon fluorescence microscopy with an axially elongated Bessel focus. Opt Lett 43(8):1914. https://doi.org/10.1364/OL.43.001914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Gu M (1996) Resolution in three-photon fluorescence scanning microscopy. Opt Lett 21(17):1414. https://doi.org/10.1364/OL.21.001414

    Article  PubMed  CAS  Google Scholar 

  13. Zhao Y, Maguluri G, Ferguson RD, Tu H, Paul K, Boppart SA, Liano DA, Iftimia N (2020) Two-photon microscope using a fiber-based approach for supercontinuum generation and light delivery to a small-footprint optical head. Opt Lett 45(4):909–912. https://doi.org/10.1364/OL.381571

  14. Lanin AA, Pochechuev MS, Chebotarev AS, Kelmanson IV, Bilan DS, Kotova DA, Tarabykin VS, Ivanov AA, Fedotov AB, Belousov VV, Zheltikov AM (2020) Cell-specific three-photon-fluorescence brain imaging: neurons, astrocytes, and gliovascular interfaces. Opt Lett 45(4):836–839. https://doi.org/10.1364/OL.45.000836

    Article  PubMed  CAS  Google Scholar 

  15. Ventura MJ, Straub M, Gu M (2003) Void channel microstructures in resin solids as an efficient way to infrared photonic crystals. Appl Phys Lett 82(11):1649–1651. https://doi.org/10.1063/1.1560870

    Article  CAS  Google Scholar 

  16. Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22(2):132–134. https://doi.org/10.1364/OL.22.000132

    Article  PubMed  CAS  Google Scholar 

  17. Lin TC, He GS, Zheng Q, Prasad PN (2006) Degenerate two-/three-photon absorption and optical power-limiting properties in femtosecond regime of a multi-branched chromophore. J Mater Chem 16(25):2490–2498. https://doi.org/10.1039/b603119f

    Article  CAS  Google Scholar 

  18. Ehrlich JE, Wu XL, Lee IYS, Hu ZY, Röckel H, Marder SR, Perry JW (1997) Two-photon absorption and broadband optical limiting with bis-donor stilbene. Opt. Lett. 22(24):1843–1845. https://doi.org/10.1364/OL.22.001843

  19. Mertz J, Xu C, Webb WW (1995) Single-molecule detection by two-photon-excited fluorescence. Opt Lett 20(24):2532–2534. https://doi.org/10.1364/OL.20.002532

    Article  PubMed  CAS  Google Scholar 

  20. Tutt LW, Boggess TF (1993) A review of optical limiting mechanisms and devices using organic, fullerenes, semiconductors and other materials. Prog Quant Electron 17(4):299–338. https://doi.org/10.1016/0079-6727(93)90004-S

    Article  CAS  Google Scholar 

  21. Wang C, Wang X-M, Shao Z-S, Zhao X, Zhou G-Y, Wang D, Jiang M-H (2001) Two-photon pumped frequency up-converted lasing properties of a new material DEASMPI. Opt Eng 40(5):783–787. https://doi.org/10.1117/1.1357804

    Article  CAS  Google Scholar 

  22. Grudtsyn YV, Koribut AV, Semjonov SL, Mikheev LD (2019) Four-photon absorption cross-section measurements in UV fused silica at 473 nm. Opt Lett 44(10):2394–2397. https://doi.org/10.1364/OL.44.002394

  23. Wang CH, Tai OYH, Wang Y (2005) Non-quadratic-intensity dependence of two-photon absorption induced fluorescence of organic chromophores in solution. J Chem Phys 122(8):084509. https://doi.org/10.1063/1.1850466

  24. Zhu H, Chen AQ, Wu YY, Zhang WF, Su SC, Ji X, Jing PT, Yu SF, Shan CX, Huang F (2018) Seven-photon-excited upconversion lasing at room temperature. Adv Opt Mater 6(16):1800518. https://doi.org/10.1002/adom.201800518

  25. Walden SL, Fernando JFS, Shortell MP, Waclawik ER, Jaatinen EA (2016) Nonlinear absorption and fluorescence in ZnO and ZnO-Au nanostructures. Adv Opt Mater 4(12):2133–2138. https://doi.org/10.1002/adom.201600375

    Article  CAS  Google Scholar 

  26. Chen AQ, Zhu H, Wu YY, Yang DC, Li JY, Yu SF, Chen ZY, Ren YH, Gui XC, Wang SP, Tang ZK (2018) Low-threshold whispering-gallery mode upconversion, lasing via simultaneous six-photon absorption. Adv Opt Mater 6(17):1800407. https://doi.org/10.1002/adom.201800407

  27. Yamanoi K, Minami Y, Nishi R, Shinzato Y, Tsuboi M, Luong MV, Nakazato T, Shimizu T, Sarukura N, Cadatal-Raduban M, Pham MH, Nguyen HD, Yokota Y, Yoshikawa A, Nagasono M, Ishikawa T (2013) VUV fluorescence from Nd3+:LuLiF4 by two photon excitation using femtosecond laser. Opt Mater 35(11):2030–2033. https://doi.org/10.1016/j.optmat.2012.09.033

    Article  CAS  Google Scholar 

  28. Bhowmika BB, Ganguly P (2005) Photophysical studies of some dyes in aqueous solution of triton X-100. Spectrochim Acta A 62(4–5):808–813. https://doi.org/10.1016/j.saa.2005.03.008

    Article  CAS  Google Scholar 

  29. Basu S, De S, Bhowmik BB (2007) Photophysical studies of Merocyanine 540 dye in aqueous micellar dispersions of different surfactants and in different solvents. Spectrochim Acta A 66(4–5):1255–1260. https://doi.org/10.1016/j.saa.2006.06.030

    Article  CAS  Google Scholar 

  30. Saha DC, Ray K, Misra TN (2000) Energy transfer in triton-X 100 micelles: a fluorescence study. Spectrochim Acta A 56(4):797–801. https://doi.org/10.1016/S1386-1425(99)00169-9

    Article  CAS  Google Scholar 

  31. Om H, Baker GA, Bright FV, Verma KK, Pandey S (2007) Noninvasive probing of aqueous Triton X-100 with steady-state and frequency-domain fluorometry. Chem Phys Lett 450(1–3):156–163. https://doi.org/10.1016/j.cplett.2007.10.101

    Article  CAS  Google Scholar 

  32. Anand U, Jash C, Mukherjee S (2011) Spectroscopic determination of Critical Micelle Concentration in aqueous and non-aqueous media using a non-invasive method. J Colloid Interface Sci 364(2):400–406. https://doi.org/10.1016/j.jcis.2011.08.047

    Article  PubMed  CAS  Google Scholar 

  33. Zehentbauer FM, Moretto C, Stephen R, Thevar T, Gilchrist JR, Pokrajac D, Richard KL, Kiefer J (2014) Fluorescence spectroscopy of Rhodamine 6G: Concentration and solvent effects. Spectrochim Acta A 121:147–151. https://doi.org/10.1016/j.saa.2013.10.062

    Article  CAS  Google Scholar 

  34. Nag A, Goswami D (2009) Solvent effect on two-photon absorption and fluorescence of rhodamine dyes. J Photochem Photobiol A 206(2–3):188–197. https://doi.org/10.1016/j.jphotochem.2009.06.007

    Article  CAS  Google Scholar 

Download references

Funding

The work is supported by Sichuan Science and Technology Program (No.2020YJ0431).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, part of investigation, writing the original draft, review and editing the manuscript, and supervision, were performed by Xianqiong Zhong. Formal analysis, resources, and part of investigation, were performed by Linfeng Chen. Formal analysis, validation, and part of investigation, were performed by Jiameng Xu. Funding acquisition and part of investigation were performed by Ke Cheng. Part of investigation were performed by Bo Wu. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xianqiong Zhong.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest/Competing Interests

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Chen, L., Xu, J. et al. Two-photon and Three-photon Fluorescence of Triton X-100 in the Ultraviolet Region. J Fluoresc 31, 1779–1785 (2021). https://doi.org/10.1007/s10895-021-02821-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02821-1

Keywords

Navigation