Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Cargo loading within ferritin nanocages in preparation for tumor-targeted delivery

Abstract

Ferritins are spherical iron storage proteins within cells, composed of 24 subunits of two types, heavy-chain ferritin (HFn) and light-chain ferritin. Ferritins auto-assemble naturally into hollow nanocages with an outer diameter of 12 nm and an interior cavity 8 nm in diameter. Since the intrinsic tumor-targeting property of human HFn was first reported in 2012, HFn has been extensively explored for tumor-targeted delivery of anticancer drugs and diagnostic molecules, including radioisotopes and fluorophores, as well as inorganic nanoparticles (NPs) and chemotherapeutic drugs. This protocol provides four detailed procedures describing how to load four types of cargoes within HFn nanocages that are capable of accurately controlling cargo loading: synthesis of inorganic metal nanoparticles within the cavity of a wild-type human HFn nanocage (Procedure 1, requires ~5 h); loading of doxorubicin into the cavity of a wild-type human HFn nanocage (Procedure 2, requires ~3 d); loading Gd3+ into the cavity of a genetically engineered human HFn nanocage (Procedure 3, requires ~20 h); and loading 64Cu2+ radioisotope into the cavity of a genetically engineered human HFn nanocage (Procedure 4, requires ~3 h). Subsequent use of these HFn-based formulations is advantageous as they have intrinsic tumor-targeting capability and lack immunogenicity. Human HFn generated as described in this protocol can therefore be used to deliver therapeutic drugs and diagnostic signals as multifunctional nanomedicines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of HFn encapsulation of metal oxide NPs.
Fig. 2: Characterization of HFn nanocage encapsulation of doxorubicin (Dox).
Fig. 3: Characterization of HFn–His nanocage encapsulation of Gd3+ or 64Cu2+.
Fig. 4: Characterization of HFn and HFn–His nanocages.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Harmsen, S., Wall, M. A., Huang, R. & Kircher, M. F. Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. Nat. Protoc. 12, 1400–1414 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nam, J. et al. Cancer nanomedicine for combination cancer immunotherapy. Nat Rev. Mater. 4, 398–414 (2019).

    Article  Google Scholar 

  5. Sanhai, W. R., Sakamoto, J. H., Canady, R. & Ferrari, M. Seven challenges for nanomedicine. Nat. Nanotechnol. 3, 242–244 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Docter, D. et al. Quantitative profiling of the protein coronas that form around nanoparticles. Nat. Protoc. 9, 2030–2044 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Martin, J. D., Cabral, H., Stylianopoulos, T. & Jain, R. K. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat. Rev. Clin. Oncol. 17, 251–266 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang, J. et al. Biochemistry of mammalian ferritins in the regulation of cellular iron homeostasis and oxidative responses. Sci. China Life Sci. 64, 352–362 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Harrison, P. M. & Arosio, P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1275, 161–203 (1996).

    Article  PubMed  Google Scholar 

  11. Fan, K. et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 7, 459–464 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Li, L. et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc. Natl Acad. Sci. USA 107, 3505–3510 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhen, Z. et al. RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano 7, 4830–4837 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin, X. et al. Hybrid ferritin nanoparticles as activatable probes for tumor imaging. Angew. Chem. Int. Ed. Engl. 50, 1569–1572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jutz, G. N. et al. Ferritin: a versatile building block for bionanotechnology. Chem. Rev. 115, 1653–1701 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Gao, F. et al. Hypoxia-tropic nanozymes as oxygen generators for tumor-favoring theranostics. Biomaterials. 230, 119635 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Liang, M. et al. H-ferritin–nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc. Natl Acad. Sci. USA 111, 14900–14905 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, T. et al. Bioengineered magnetoferritin nanozymes for pathological identification of high-risk and ruptured atherosclerotic plaques in humans. Nano Res. 12, 863–868 (2019).

    Article  CAS  Google Scholar 

  19. Zhao, Y. et al. Bioengineered magnetoferritin nanoprobes for single-dose nuclear-magnetic resonance tumor imaging. ACS Nano 10, 4184–4191 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Li, Y. et al. Nanoparticle ferritin-bound erastin and rapamycin: a nanodrug combining autophagy and ferroptosis for anticancer therapy. Biomater. Sci. 7, 3779–3787 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Cheng, X. et al. TfR1 binding with H-ferritin nanocarrier achieves prognostic diagnosis and enhances the therapeutic efficacy in clinical gastric cancer. Cell Death Dis. 11, 1–13 (2020).

    Article  CAS  Google Scholar 

  22. Macone, A. et al. Ferritin nanovehicle for targeted delivery of cytochrome C to cancer cells. Sci. Rep. 9, 11749 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zhang, C., Zhang, X. & Zhao, G. Ferritin nanocage: a versatile nanocarrier utilized in the field of food, nutrition, and medicine. Nanomaterials (Basel) 10, 1894 (2020).

    Article  CAS  Google Scholar 

  24. Tetter, S. & Hilvert, D. Enzyme encapsulation by a ferritin cage. Angew. Chem. Int. Ed. Engl. 56, 14933–14936 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Khoshnejad, M., Parhiz, H., Shuvaev, V. V., Dmochowski, I. J. & Muzykantov, V. R. Ferritin-based drug delivery systems: hybrid nanocarriers for vascular immunotargeting. J. Control. Release 282, 13–24 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, L. et al. Ferritin-mediated siRNA delivery and gene silencing in human tumor and primary cells. Biomaterials 98, 143–151 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Z. et al. Metal ion assisted interface re-engineering of a ferritin nanocage for enhanced biofunctions and cancer therapy. Nanoscale 10, 1135–1144 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Uchida, M. et al. Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J. Am. Chem. Soc. 128, 16626–16633 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Truffi, M. et al. Ferritin nanocages: a biological platform for drug delivery, imaging and theranostics in cancer. Pharmacol. Res. 107, 57–65 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Z. et al. Functional ferritin nanoparticles for biomedical applications. Front. Chem. Sci. Eng. 11, 633–646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, Z. et al. Biomineralization-inspired synthesis of copper sulfide–ferritin nanocages as cancer theranostics. ACS Nano 10, 3453–3460 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin, X. et al. Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett. 11, 814–819 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chauhan, V. P. et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 7, 383–388 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang, X. et al. Protein nanocages that penetrate airway mucus and tumor tissue. Proc. Natl Acad. Sci. USA 114, E6595–E6602 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, X. et al. Epidermal growth factor–ferritin H-chain protein nanoparticles for tumor active targeting. Small 8, 2505–2514 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Bitonto, V. et al. L-ferritin: a theranostic agent of natural origin for MRI visualization and treatment of breast cancer. J. Control. Release 319, 300–310 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Zhen, Z. et al. Ferritin nanocages to encapsulate and deliver photosensitizers for efficient photodynamic therapy against cancer. ACS Nano 7, 6988–6996 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Kuruppu, A. I. et al. An apoferritin-based drug delivery system for the tyrosine kinase inhibitor gefitinib. Adv. Healthc. Mater. 4, 2816–2821 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Zhou, H. et al. Mn-loaded apolactoferrin dots for in vivo MRI and NIR-II cancer imaging. J. Mater. Chem. C 7, 9448–9454 (2019).

    Article  CAS  Google Scholar 

  40. Fan, J. et al. Direct evidence for catalase and peroxidase activities of ferritin–platinum nanoparticles. Biomaterials 32, 1611–1618 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Yang, Z. et al. Encapsulation of platinum anticancer drugs by apoferritin. Chem. Commun. (Camb) 33, 3453–3455 (2007).

    Article  CAS  Google Scholar 

  42. Kim, M. et al. pH-dependent structures of ferritin and apoferritin in solution: disassembly and reassembly. Biomacromolecules 12, 1629–1640 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. He, J., Fan, K. & Yan, X. Ferritin drug carrier (FDC) for tumor targeting therapy. J. Control Release 311, 288–300 (2019).

    Article  PubMed  CAS  Google Scholar 

  44. Tesarova, B., Musilek, K., Rex, S. & Heger, Z. Taking advantage of cellular uptake of ferritin nanocages for targeted drug delivery. J. Control Release 325, 176–190 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, X. et al. Apoferritin–CeO 2 nano-truffle that has excellent artificial redox enzyme activity. Chem. Commun. (Camb) 48, 3155–3157 (2012).

    Article  CAS  Google Scholar 

  46. Iwahori, K., Yoshizawa, K., Muraoka, M. & Yamashita, I. Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system. Inorg. Chem. 44, 6393–6400 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Naito, M., Iwahori, K., Miura, A., Yamane, M. & Yamashita, I. Circularly polarized luminescent CdS quantum dots prepared in a protein nanocage. Angew. Chem. Int. Ed. Engl. 49, 7006–7009 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Yamashita, I., Hayashi, J. & Hara, M. Bio-template synthesis of uniform CdSe nanoparticles using cage-shaped protein, apoferritin. Chem. Lett. 33, 1158–1159 (2004).

    Article  CAS  Google Scholar 

  49. Klem, M. T., Mosolf, J., Young, M. & Douglas, T. Photochemical mineralization of europium, titanium, and iron oxyhydroxide nanoparticles in the ferritin protein cage. Inorg. Chem. 47, 2237–2239 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Hosein, H.-A., Strongin, D. R., Allen, M. & Douglas, T. Iron and cobalt oxide and metallic nanoparticles prepared from ferritin. Langmuir. 20, 10283–10287 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Monti, D. M., Ferraro, G. & Merlino, A. Ferritin-based anticancer metallodrug delivery: crystallographic, analytical and cytotoxicity studies. Nanomedicine 20, 101997 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Falvo, E. et al. Antibody–drug conjugates: targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin. Nanoscale 5, 12278–12285 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Liu, W. et al. Target delivering paclitaxel by ferritin heavy chain nanocages for glioma treatment. J. Control. Release 323, 191–202 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Liu, M., Zhu, Y., Wu, T., Cheng, J. & Liu, Y. Nanobody-ferritin conjugate for targeted photodynamic therapy. Chemistry 26, 7442–7450 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Lee, E. J. et al. Engineered proteinticles for targeted delivery of siRNA to cancer cells. Adv. Funct. Mater. 25, 1279–1286 (2015).

    Article  CAS  Google Scholar 

  56. Wang, W. et al. Ferritin nanoparticle-based SpyTag/SpyCatcher-enabled click vaccine for tumor immunotherapy. Nanomedicine 16, 69–78 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Falvo, E. et al. The presence of glutamate residues on the PAS sequence of the stimuli-sensitive nano-ferritin improves in vivo biodistribution and mitoxantrone encapsulation homogeneity. J. Control. Release 275, 177–185 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Huang, P. et al. Dye-loaded ferritin nanocages for multimodal imaging and photothermal therapy. Adv. Mater. 26, 6401–6408 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, L. et al. Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability. Food Chem. 149, 307–312 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Huang, C. et al. Ultra-high loading of sinoporphyrin sodium in ferritin for single-wave motivated photothermal and photodynamic co-therapy. Biomater. Sci. 5, 1512–1516 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Li, K. et al. Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells. Nanoscale 4, 188–193 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Kim, H.-K. et al. Highly brain-permeable apoferritin nanocage with high dysprosium loading capacity as a new T2 contrast agent for ultra-high field magnetic resonance imaging. Biomaterials 243, 119939 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Crich, S. G. et al. Magnetic resonance visualization of tumor angiogenesis by targeting neural cell adhesion molecules with the highly sensitive gadolinium-loaded apoferritin probe. Cancer Res. 66, 9196–9201 (2006).

    Article  CAS  Google Scholar 

  64. Cai, Y., Wang, Y., Zhang, T. & Pan, Y. Gadolinium-labeled ferritin nanoparticles as T 1 contrast agents for magnetic resonance imaging of tumors. ACS Appl. Nano Mater. 3, 8771–8783 (2020).

    Article  CAS  Google Scholar 

  65. Sánchez, P. et al. MRI relaxation properties of water-soluble apoferritin-encapsulated gadolinium oxide-hydroxide nanoparticles. Dalton Trans. 5, 800–804 (2009).

    Article  Google Scholar 

  66. Liang, M. et al. Bioengineered H-ferritin nanocages for quantitative imaging of vulnerable plaques in atherosclerosis. ACS Nano 12, 9300–9308 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Jiang, B. et al. Biomineralization synthesis of the cobalt nanozyme in SP94-ferritin nanocages for prognostic diagnosis of hepatocellular carcinoma. ACS Appl. Mater. Interfaces 11, 9747–9755 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Butts, C. A. et al. Directing noble metal ion chemistry within a designed ferritin protein. Biochemistry 47, 12729–12739 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Iwahori, K., Takagi, R., Kishimoto, N. & Yamashita, I. A size controlled synthesis of CuS nano-particles in the protein cage, apoferritin. Mater. Lett. 65, 3245–3247 (2011).

    Article  CAS  Google Scholar 

  70. Gálvez, N., Sánchez, P. & Domínguez-Vera, J. M. Preparation of Cu and CuFe Prussian Blue derivative nanoparticles using the apoferritin cavity as nanoreactor. Dalton Trans. 15, 2492–2494 (2005).

    Article  CAS  Google Scholar 

  71. Gálvez, N. et al. Apoferritin-encapsulated Ni and Co superparamagnetic nanoparticles. J. Mater. Chem. 16, 2757–2761 (2006).

    Article  Google Scholar 

  72. Kashanian, S., Tarighat, F. & Rafipour, R. Biomimetic synthesis of cobalt nanoparticle using apoferritin and its application in electrochemical reaction to detect glucose. New Biotechnol. 25, S376 (2009).

    Article  Google Scholar 

  73. Kashanian, S., Tarighat, F. A., Rafipour, R. & Abbasi-Tarighat, M. Biomimetic synthesis and characterization of cobalt nanoparticles using apoferritin, and investigation of direct electron transfer of Co (NPs)–ferritin at modified glassy carbon electrode to design a novel nanobiosensor. Mol. Biol. Rep. 39, 8793–8802 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Warne, B., Kasyutich, O. I., Mayes, E. L., Wiggins, J. A. L. & Wong, K. K. W. Self assembled nanoparticulate Co: Pt for data storage applications. IEEE Trans. Magn. 36, 3009–3011 (2000).

    Article  CAS  Google Scholar 

  75. Gálvez, N. et al. A bioinspired approach to the synthesis of bimetallic CoNi nanoparticles. Inorg. Chem. 49, 1705–1711 (2010).

    Article  PubMed  CAS  Google Scholar 

  76. Okuda, M., Iwahori, K., Yamashita, I. & Yoshimura, H. Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. Biotechnol. Bioeng. 84, 187–194 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Polanams, J., Ray, A. D. & Watt, R. K. Nanophase iron phosphate, iron arsenate, iron vanadate, and iron molybdate minerals synthesized within the protein cage of ferritin. Inorg. Chem. 44, 3203–3209 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Shin, Y., Dohnalkova, A. & Lin, Y. Preparation of homogeneous gold–silver alloy nanoparticles using the apoferritin cavity as a nanoreactor. J. Phys. Chem. C 114, 5985–5989 (2010).

    Article  CAS  Google Scholar 

  79. Provaznik, I., Vrba, R. & Kizek, R. Electrochemical behaviour of apoferritin encapsulating of silver (I) ions and its application for treatment of Staphylococcus aureus. Int. J. Electrochem. Sci. 7, 6378–6395 (2012).

    Google Scholar 

  80. Sennuga, A., van Marwijk, J. & Whiteley, C. G. Multiple fold increase in activity of ferroxidase–apoferritin complex by silver and gold nanoparticles. Nanomedicine 9, 185–193 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Turyanska, L. et al. The biocompatibility of apoferritin-encapsulated PbS quantum dots. Small 5, 1738–1741 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Turyanska, L. et al. The differential effect of apoferritin-PbS nanocomposites on cell cycle progression in normal and cancerous cells. J. Mater. Chem. 22, 660–665 (2012).

    Article  CAS  Google Scholar 

  83. Hennequin, B. et al. Aqueous near-infrared fluorescent composites based on apoferritin-encapsulated PbS quantum dots. Adv. Mater. 20, 3592–3596 (2008).

    Article  CAS  Google Scholar 

  84. Du, D. et al. Nanoparticle-based immunosensor with apoferritin templated metallic phosphate label for quantification of phosphorylated acetylcholinesterase. Biosens. Bioelectron. 26, 3857–3863 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Wu, H. et al. Apoferritin-templated yttrium phosphate nanoparticle conjugates for radioimmunotherapy of cancers. J. Nanosci. Nanotechnol. 8, 2316–2322 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Wu, H., Engelhard, M. H., Wang, J., Fisher, D. R. & Lin, Y. Synthesis of lutetium phosphate–apoferritin core–shell nanoparticles for potential applications in radioimmunoimaging and radioimmunotherapy of cancers. J. Mater. Chem. 18, 1779–1783 (2008).

    Article  CAS  Google Scholar 

  87. Li, M., Viravaidya, C. & Mann, S. J. S. Polymer-mediated synthesis of ferritin-encapsulated inorganic nanoparticles. Small 3, 1477–1481 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, W. et al. Prussian blue modified ferritin as peroxidase mimetics and its applications in biological detection. J. Nanosci. Nanotechnol. 13, 60–67 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Hainfeld, J. F. Uranium-loaded apoferritin with antibodies attached: molecular design for uranium neutron-capture therapy. Proc. Natl Acad. Sci. USA 89, 11064–11068 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xing, R. et al. Characterization and cellular uptake of platinum anticancer drugs encapsulated in apoferritin. J. Inorg. Biochem. 103, 1039–1044 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, Q. et al. Inlaying radiosensitizer onto the polypeptide shell of drug-loaded ferritin for imaging and combinational chemo-radiotherapy. Theranostics 9, 2779–2790 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kilic, M. A., Ozlu, E. & Calis, S. A novel protein-based anticancer drug encapsulating nanosphere: apoferritin-doxorubicin complex. J. Biomed. Nanotechnol. 8, 508–514 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Cutrin, J. C., Crich, S. G., Burghelea, D., Dastru, W. & Aime, S. Curcumin/Gd loaded apoferritin: a novel “theranostic” agent to prevent hepatocellular damage in toxic induced acute hepatitis. Mol. Pharm. 10, 2079–2085 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Lei, Y. et al. Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression. J. Control. Release 232, 131–142 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the following grants: National Key R&D Program of China (2017YFA0205501), National Natural Science Foundation of China (81722024 and 81571728), Youth Innovation Promotion (2014078 and Y201819) and Shenzhen Key Technologies R&D general program (Shenzhen Science & Technology Innovation, 2020, NO. 194).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to developing this protocol and writing this paper. M.L. supervised the project.

Corresponding author

Correspondence to Minmin Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Pierpaolo Ceci, Insan Kim, Ichiro Yamashita and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Fan, K. et al. Nat. Nanotechnol. 7, 459–464 (2012): https://doi.org/10.1038/nnano.2012.90

Liang, M. et al. Proc. Natl Acad. Sci. 111, 14900–14905 (2014): https://doi.org/10.1073/pnas.1407808111

Zhao, Y. et al. ACS Nano, 10, 4184–4191(2016): https://doi.org/10.1021/acsnano.5b07408

Liang, M. et al. ACS Nano 12, 9300–9308 (2018): https://doi.org/10.1021/acsnano.8b04158

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Fig. 1 and Supplementary Tables 1 and 2.

Reporting Summary

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Cheng, D., He, J. et al. Cargo loading within ferritin nanocages in preparation for tumor-targeted delivery. Nat Protoc 16, 4878–4896 (2021). https://doi.org/10.1038/s41596-021-00602-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00602-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research