Skip to main content
Log in

Chiral Cosserat model for architected materials constructed by homogenization

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A homogenization methodology for the construction of effective Cosserat substitution media for heterogeneous materials is proposed, combining a variational principle in linear elasticity with the extended Hill-Mandel lemma accounting for the introduced generalized kinematics. A general methodology is proposed which can be applied to a wide class of architected materials exhibiting such micropolar chiral effects. The tensors of effective micropolar moduli are formulated as integrals over a representative unit cell utilizing of the displacement localization operators, solution of classical and higher-order unit cell problems. The proposed method delivers size-independent higher-order effective moduli. The effective micropolar moduli of periodic lattice materials endowed with chirality and non-centrosymmetry are computed as an application of the developed homogenization method. The homogenized model is validated by comparing the local and global mechanical responses of fully resolved networks with those of plates and macrobeams architected with tetrachiral or anti-tetrachiral lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Alderson A, Alderson KL, Attard D, Evans KE, Gatt R, Grima JN, Miller W, Ravirala N, Smith CW, Zied K (2010) Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Compos Sci Technol 70:1042–1048. https://doi.org/10.1016/j.compscitech.2009.07.009

    Article  Google Scholar 

  2. Auffray N, Bouchet R, Bréchet Y (2010) Strain gradient elastic homogenization of bidimensional cellular media. Int J Solids Struct 47:1698–1710. https://doi.org/10.1016/j.ijsolstr.2010.03.011

    Article  MATH  Google Scholar 

  3. Auffray N, Dell’Isola F, Eremeyev V, Madeo A, Rosi G (2015) Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Math Mech Solids 20:375–417. https://doi.org/10.1177/1081286513497616

    Article  MathSciNet  MATH  Google Scholar 

  4. Auricchio F, Bacigalupo A, Gambarotta L, Lepidi M, Morganti S, Vadalà F (2019) A novel layered topology of auxetic materials based on the tetrachiral honeycomb microstructure. Mater Des 179:107883. https://doi.org/10.1016/j.matdes.2019.107883

    Article  Google Scholar 

  5. Avnir D, Huylebrouck D (2013) On left and right: chirality in architecture. Nexus Netw J 15:171–182. https://doi.org/10.1007/s00004-013-0144-x

    Article  Google Scholar 

  6. Bacigalupo A, De Bellis ML (2015) Auxetic anti-tetrachiral materials: equivalent elastic properties and frequency band-gaps. Compos Struct 131:530–544. https://doi.org/10.1016/j.compstruct.2015.05.039

    Article  Google Scholar 

  7. Bacigalupo A, Gambarotta L (2014) Homogenization of periodic hexa- and tetrachiral cellular solids. Compos Struct 116:461–476. https://doi.org/10.1016/j.compstruct.2014.05.033

    Article  Google Scholar 

  8. Barboura S, Li J (2018) Establishment of strain gradient constitutive relations by using asymptotic analysis and the finite element method for complex periodic microstructures. Int J Solids Struct 136–137:60–76. https://doi.org/10.1016/j.ijsolstr.2017.12.003

    Article  Google Scholar 

  9. Biswas R, Poh LH, Shedbale AS (2020) A micromorphic computational homogenization framework for auxetic tetra-chiral structures. J Mech Phys Solids 135:103801. https://doi.org/10.1016/j.jmps.2019.103801

    Article  MathSciNet  Google Scholar 

  10. Camar-Eddine M, Seppecher P (2003) Determination of the closure of the set of elasticity functionals. Arch Ration Mech Anal 170:211–245. https://doi.org/10.1007/s00205-003-0272-7

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen Y, Liu X, Hu G (2014) Micropolar modeling of planar orthotropic rectangular chiral lattices. Comptes Rendus Mécanique 342:273–283. https://doi.org/10.1016/j.crme.2014.01.010

    Article  Google Scholar 

  12. Cosserat E, Cosserat F (1909) Théorie des Corps déformables. Nature 81:67–67. https://doi.org/10.1038/081067a0

    Article  MATH  Google Scholar 

  13. Cui TJ, Smith D, Liu R (eds) (2010) Metamaterials. Springer US, Boston. https://doi.org/10.1007/978-1-4419-0573-4

    Book  Google Scholar 

  14. dell’Isola F, Giorgio I, Andreaus U (2015) Elastic pantographic 2D lattices: a numerical analysis on the static response and wave propagation. Proc Est Acad Sci 64:219. https://doi.org/10.3176/proc.2015.3.03

    Article  Google Scholar 

  15. Dos Reis F, Ganghoffer JF (2012) Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput Struct 112–113:354–363. https://doi.org/10.1016/j.compstruc.2012.08.006

    Article  Google Scholar 

  16. El Nady K, Dos Reis F, Ganghoffer JF (2017) Computation of the homogenized nonlinear elastic response of 2D and 3D auxetic structures based on micropolar continuum models. Compos Struct 170:271–290. https://doi.org/10.1016/j.compstruct.2017.02.043

    Article  Google Scholar 

  17. Eringen AC (1999) Microcontinuum field theories. Springer, New York. https://doi.org/10.1007/978-1-4612-0555-5

    Book  MATH  Google Scholar 

  18. Eringen AC (1965) Linear theory of micropolar elasticity. J Math Mech 1:5. https://doi.org/10.21236/AD0473723

    Article  Google Scholar 

  19. Evans KE, Alderson A (2000) Auxetic materials: functional materials and structures from lateral thinking! Adv Mater 12:617–628. https://doi.org/10.1002/(SICI)1521-4095(200005)12:9%3c617::AID-ADMA617%3e3.0.CO;2-3

    Article  Google Scholar 

  20. Forest S, Sievert R (2006) Nonlinear microstrain theories. Int J Solids Struct 43:7224–7245. https://doi.org/10.1016/j.ijsolstr.2006.05.012

    Article  MathSciNet  MATH  Google Scholar 

  21. Goda I, Assidi M, Belouettar S, Ganghoffer JF (2012) A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J Mech Behav Biomed Mater 16:87–108. https://doi.org/10.1016/j.jmbbm.2012.07.012

    Article  Google Scholar 

  22. Goda I, Assidi M, Ganghoffer JF (2014) A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech Model Mechanobiol 13:53–83. https://doi.org/10.1007/s10237-013-0486-z

    Article  Google Scholar 

  23. Gologanu M, Leblond J-B, Perrin G, Devaux J (1997) Recent extensions of Gurson’s model for porous ductile metals. In: Continuum micromechanics. Springer Vienna, Vienna, pp 61–130. https://doi.org/10.1007/978-3-7091-2662-2_2

  24. Grima JN, Mizzi L, Azzopardi KM, Gatt R (2016) Auxetic perforated mechanical metamaterials with randomly oriented cuts. Adv Mater 28:385–389. https://doi.org/10.1002/adma.201503653

    Article  Google Scholar 

  25. Hård af Segerstad P, Toll S, Larsson R (2009) A micropolar theory for the finite elasticity of open-cell cellular solids. Proc R Soc A Math Phys Eng Sci. 465:843–865. https://doi.org/10.1098/rspa.2008.0267

    Article  MathSciNet  MATH  Google Scholar 

  26. Hill R (1967) The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15:79–95. https://doi.org/10.1016/0022-5096(67)90018-X

    Article  Google Scholar 

  27. Hill R (1966) Generalized constitutive relations for incremental deformation of metal crystals by multislip. J Mech Phys Solids 14:95–102. https://doi.org/10.1016/0022-5096(66)90040-8

    Article  Google Scholar 

  28. Hill R (1972) On constitutive macro-variables for heterogeneous solids at finite strain. Proc R Soc Lond A Math Phys Sci 326:131–147. https://doi.org/10.1098/rspa.1972.0001

    Article  MATH  Google Scholar 

  29. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372. https://doi.org/10.1016/0022-5096(63)90036-X

    Article  MATH  Google Scholar 

  30. Howes FA, Whitaker S (1985) The spatial averaging theorem revisited. Chem Eng Sci 40:1387–1392. https://doi.org/10.1016/0009-2509(85)80078-6

    Article  Google Scholar 

  31. Jasiuk I, Ostoja-Starzewski M (1995) Planar Cosserat elasticity of materials with holes and intrusions. Appl Mech Rev 48:S11–S18. https://doi.org/10.1115/1.3005060

    Article  MATH  Google Scholar 

  32. Kaczmarczyk Ł, Pearce CJ, Bićanić N (2010) Studies of microstructural size effect and higher-order deformation in second-order computational homogenization. Comput Struct 88:1383–1390. https://doi.org/10.1016/j.compstruc.2008.08.004

    Article  Google Scholar 

  33. Karathanasopoulos N, Dos Reis F, Reda H, Ganghoffer J-F (2018) Computing the effective bulk and normal to shear properties of common two-dimensional architectured materials. Comput Mater Sci 154:284–294. https://doi.org/10.1016/j.commatsci.2018.07.044

    Article  Google Scholar 

  34. Karathanasopoulos N, Dos Reis F, Diamantopoulou MH, Ganghoffer J-F (2020) Mechanics of beams made from chiral metamaterials: tuning deflections through normal-shear strain couplings. Mater Des 189:108520. https://doi.org/10.1016/j.matdes.2020.108520

    Article  Google Scholar 

  35. Koiter W (1964) Couple stresses in the theory of elasticity, I & II. Philos Trans R Soc Lond B 67:17–44

    MathSciNet  MATH  Google Scholar 

  36. Lakes RS, Benedict RL (1982) Noncentrosymmetry in micropolar elasticity. Int J Eng Sci 20:1161–1167. https://doi.org/10.1016/0020-7225(82)90096-9

    Article  MATH  Google Scholar 

  37. Lee J-H, Singer JP, Thomas EL (2012) Micro-/nanostructured mechanical metamaterials. Adv Mater 24:4782–4810. https://doi.org/10.1002/adma.201201644

    Article  Google Scholar 

  38. Liu XN, Huang GL, Hu GK (2012) Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices. J Mech Phys Solids 60:1907–1921. https://doi.org/10.1016/j.jmps.2012.06.008

    Article  MathSciNet  Google Scholar 

  39. Liu Y, Hu H (2010) A review on auxetic structures and polymeric materials. Sci Res Essays 5:1052–1063

    Google Scholar 

  40. Liu Y, Zhang X (2011) Metamaterials: a new frontier of science and technology. Chem Soc Rev 40:2494. https://doi.org/10.1039/c0cs00184h

    Article  Google Scholar 

  41. Mandel J (1966) Contribution théorique à l’étude de l’écrouissage et des lois de l’écoulement plastique. In: Applied mechanics. Springer, Berlin, pp 502–509. https://doi.org/10.1007/978-3-662-29364-5_67

  42. Mindlin RD, Eshel NN (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4:109–124. https://doi.org/10.1016/0020-7683(68)90036-X

    Article  MATH  Google Scholar 

  43. Monchiet V, Auffray N, Yvonnet J (2020) Strain-gradient homogenization: a bridge between the asymptotic expansion and quadratic boundary condition methods. Mech Mater 143:103309. https://doi.org/10.1016/j.mechmat.2019.103309

    Article  Google Scholar 

  44. Nunziato JW, Cowin SC (1979) A nonlinear theory of elastic materials with voids. Arch Ration Mech Anal 72:175–201. https://doi.org/10.1007/BF00249363

    Article  MathSciNet  MATH  Google Scholar 

  45. Pideri C, Seppecher P (1997) A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin Mech Thermodyn 9:241–257. https://doi.org/10.1007/s001610050069

    Article  MathSciNet  MATH  Google Scholar 

  46. Prall D, Lakes RS (1997) Properties of a chiral honeycomb with a Poisson’s ratio of—1. Int J Mech Sci 39:305–314. https://doi.org/10.1016/S0020-7403(96)00025-2

    Article  MATH  Google Scholar 

  47. Prawoto Y (2012) Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Comput Mater Sci 58:140–153. https://doi.org/10.1016/j.commatsci.2012.02.012

    Article  Google Scholar 

  48. Reda H, Alavi SE, Nasimsobhan M, Ganghoffer JF (2021) Homogenization towards chiral Cosserat continua and applications to enhanced Timoshenko beam theories. Mech Mat 155:103728

    Article  Google Scholar 

  49. Smith DR, Pendry JB (2006) Homogenization of metamaterials by field averaging (invited paper). J Opt Soc Am B 23:391. https://doi.org/10.1364/JOSAB.23.000391

    Article  Google Scholar 

  50. Spadoni A, Ruzzene M (2012) Elasto-static micropolar behavior of a chiral auxetic lattice. J Mech Phys Solids 60:156–171. https://doi.org/10.1016/j.jmps.2011.09.012

    Article  Google Scholar 

  51. Thomson W, Kelvin B (2010) Baltimore lectures on molecular dynamics and the wave theory of light. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511694523

    Book  MATH  Google Scholar 

  52. Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11:385–414. https://doi.org/10.1007/BF00253945

    Article  MathSciNet  MATH  Google Scholar 

  53. Trinh D-K, Forest S (2010) The role of the fluctuation field in higher order homogenization. PAMM 10:431–432. https://doi.org/10.1002/pamm.201010208

    Article  Google Scholar 

  54. Trinh DK, Janicke R, Auffray N, Diebels S, Forest S (2012) Evaluation of generalized continuum substitution models for heterogeneous materials. Int J Multiscale Comput Eng 10:527–549. https://doi.org/10.1615/IntJMultCompEng.2012003105

    Article  Google Scholar 

  55. Truesdell C, Noll W (1992) The non-linear field theories of mechanics. Springer, Berlin. https://doi.org/10.1007/978-3-662-13183-1

    Book  MATH  Google Scholar 

  56. Truesdell C, Noll W (1965) The non-linear field theories of mechanics, pp 1–541. https://doi.org/10.1007/978-3-642-46015-9_1

  57. van der Sluis O, Van Beek PHJ, Schreuers PJG, Meijer HEH (1999) Homogenization of heterogeneous polymers. Int J Solids Struct 36:3193–3214

    Article  MathSciNet  Google Scholar 

  58. Wang J-S, Wang G, Feng X-Q, Kitamura T, Kang Y-L, Yu S-W, Qin Q-H (2013) Hierarchical chirality transfer in the growth of Towel Gourd tendrils. Sci Rep 3:3102. https://doi.org/10.1038/srep03102

    Article  Google Scholar 

  59. Wang P, Casadei F, Shan S, Weaver JC, Bertoldi K (2014) Harnessing buckling to design tunable locally resonant acoustic metamaterials. Phys Rev Lett 113:014301. https://doi.org/10.1103/PhysRevLett.113.014301

    Article  Google Scholar 

  60. Wood BD (2013) Technical note: Revisiting the geometric theorems for volume averaging. Adv Water Resour 62:340–352. https://doi.org/10.1016/j.advwatres.2013.08.012

    Article  Google Scholar 

  61. Wu W, Geng L, Niu Y, Qi D, Cui X, Fang D (2018) Compression twist deformation of novel tetrachiral architected cylindrical tube inspired by towel gourd tendrils. Extreme Mech Lett 20:104–111. https://doi.org/10.1016/j.eml.2018.02.001

    Article  Google Scholar 

  62. Wu W, Hu W, Qian G, Liao H, Xu X, Berto F (2019) Mechanical design and multifunctional applications of chiral mechanical metamaterials: a review. Mater Des 180:107950. https://doi.org/10.1016/j.matdes.2019.107950

    Article  Google Scholar 

  63. Xia Z, Zhang Y, Ellyin F (2003) A unified periodical boundary conditions for representative volume elements of composites and applications. Int J Solids Struct 40(8):1907–1921. https://doi.org/10.1016/S0020-7683(03)00024-6

    Article  MATH  Google Scholar 

  64. Zhang W, Neville R, Zhang D, Scarpa F, Wang L, Lakes R (2018) The two-dimensional elasticity of a chiral hinge lattice metamaterial. Int J Solids Struct 141–142:254–263. https://doi.org/10.1016/j.ijsolstr.2018.02.027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Ganghoffer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Evaluation of the effective micropolar moduli

Since the functional defined on the right-hand side of Eq. (43) is regular in the macrostrains \({\mathbf{E}}^{\rm sym} \left( {\mathbf{x}} \right)\), \({\mathbf{E}}^{\rm skew} \left( {\mathbf{x}} \right)\), and macrocurvature \({\mathbf{\rm K}}\left( {\mathbf{x}} \right)\), playing the role of parameters in the bounded integrand, partial derivative and integration can be exchanged, so that the stress measures in Eq. (23) leads to

$$\begin{aligned} & {{\varvec{\Sigma}}}^{\rm sym} : = \frac{{\partial W_{M} ({\mathbf{E}}^{\rm sym} ,{\mathbf{E}}^{\rm skew} ,{\mathbf{K}})}}{{\partial {\mathbf{E}}^{\rm sym} }} = \mathop {Min}\limits_{{{\tilde{\mathbf{u}}} \in H_{per}^{1} (Y)}} \frac{\partial }{{\partial {\mathbf{E}}^{\rm sym} }}\left\{ \begin{gathered} \int\limits_{Y} {\frac{1}{2}{\mathbf{C}}\left( {\mathbf{y}} \right):\left( {{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}}):{\mathbf{E}}^{\rm sym} \left( {\mathbf{x}} \right) + {\mathbf{A}}^{{{\rm E}^{\rm skew} }} ({\mathbf{y}}) \cdot {\mathbf{E}}^{\rm skew} \left( {\mathbf{x}} \right) + {\mathbf{A}}^{\rm K} ({\mathbf{y}}):{\mathbf{K}}\left( {\mathbf{x}} \right)} \right)} : \hfill \\ \left( {{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}}):{\mathbf{E}}^{\rm sym} \left( {\mathbf{x}} \right) + {\mathbf{A}}^{{{\rm E}^{\rm skew} }} ({\mathbf{y}}) \cdot {\mathbf{E}}^{\rm skew} \left( {\mathbf{x}} \right) + {\mathbf{A}}^{\rm K} ({\mathbf{y}}):{\mathbf{K}}\left( {\mathbf{x}} \right)} \right)dV_{y} \hfill \\ \end{gathered} \right\} \\ & {{\varvec{\Sigma}}}^{\rm skew} : = \frac{{\partial W_{M} ({\mathbf{E}}^{\rm sym} ,{\mathbf{E}}^{\rm skew} ,{\mathbf{K}})}}{{\partial {\mathbf{E}}^{\rm skew} }} = \mathop {Min}\limits_{{{\tilde{\mathbf{u}}} \in H_{per}^{1} (Y)}} \frac{\partial }{{\partial {\mathbf{E}}^{\rm skew} }}\left\{ \begin{gathered} \int\limits_{Y} {\frac{1}{2}{\mathbf{C}}\left( {\mathbf{y}} \right):\left( {{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}}):{\mathbf{E}}^{\rm sym} \left( {\mathbf{x}} \right) + {\mathbf{A}}^{{{\rm E}^{\rm skew} }} ({\mathbf{y}}) \cdot {\mathbf{E}}^{\rm skew} \left( {\mathbf{x}} \right) + {\mathbf{A}}^{\rm K} ({\mathbf{y}}):{\mathbf{K}}\left( {\mathbf{x}} \right)} \right)} : \hfill \\ \left( {{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}}):{\mathbf{E}}^{\rm sym} \left( {\mathbf{x}} \right) + {\mathbf{A}}^{{{\rm E}^{\rm skew} }} ({\mathbf{y}}) \cdot {\mathbf{E}}^{\rm skew} \left( {\mathbf{x}} \right) + {\mathbf{A}}^{\rm K} ({\mathbf{y}}):{\mathbf{K}}\left( {\mathbf{x}} \right)} \right)dV_{y} \hfill \\ \end{gathered} \right\} \\ & {\mathbf{M}}: = \frac{{\partial W_{M} ({\mathbf{E}}^{\rm sym} ,{\mathbf{E}}^{\rm skew} ,{\mathbf{K}})}}{{\partial {\mathbf{K}}}} = \mathop {Min}\limits_{{{\tilde{\mathbf{u}}} \in H_{per}^{1} (Y)}} \frac{\partial }{{\partial {\mathbf{K}}}}\left\{ \begin{gathered} \int\limits_{Y} {\frac{1}{2}{\mathbf{C}}\left( {\mathbf{y}} \right):\left( {{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}}):{\mathbf{E}}^{\rm sym} \left( {\mathbf{x}} \right) + {\mathbf{A}}^{{{\rm E}^{\rm skew} }} ({\mathbf{y}}) \cdot {\mathbf{E}}^{\rm skew} \left( {\mathbf{x}} \right) + {\mathbf{A}}^{\rm K} ({\mathbf{y}}):{\mathbf{K}}\left( {\mathbf{x}} \right)} \right)} : \hfill \\ \left( {{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}}):{\mathbf{E}}^{\rm sym} \left( {\mathbf{x}} \right) + {\mathbf{A}}^{{{\rm E}^{\rm skew} }} ({\mathbf{y}}) \cdot {\mathbf{E}}^{\rm skew} \left( {\mathbf{x}} \right) + {\mathbf{A}}^{\rm K} ({\mathbf{y}}):{\mathbf{K}}\left( {\mathbf{x}} \right)} \right)dV_{y} \hfill \\ \end{gathered} \right\} \\ \end{aligned}$$
(64)

Equation (64) leads to the expressions of macro stress, anti\rm symmetric macro stress, and micropolar stress tensors after straightforward calculations:

$$\begin{aligned} & {{\varvec{\Sigma}}}^{\rm sym} = \int_{Y} {{\mathbf{C}}\left( {\mathbf{y}} \right):\left( {{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}}):{\mathbf{E}}^{\rm sym} \left( {\mathbf{x}} \right) + {\mathbf{A}}^{{{\rm E}^{\rm skew} }} ({\mathbf{y}}) \cdot {\mathbf{E}}^{\rm skew} \left( {\mathbf{x}} \right) + {\mathbf{A}}^{\rm K} ({\mathbf{y}}):{\mathbf{K}}\left( {\mathbf{x}} \right)} \right)} :{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}})\,dV_{y} \\ & \quad = \left\{ {\int\limits_{Y} {{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}}):{\mathbf{C}}:{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}})} dV_{y} } \right\}:{\mathbf{E}}^{\rm sym} ({\mathbf{x}}) + \left\{ {\int\limits_{Y} {{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}}):{\mathbf{C}}} :{\mathbf{A}}^{{E^{\rm skew} }} ({\mathbf{y}})dV_{y} } \right\} \cdot {\mathbf{E}}^{\rm skew} ({\mathbf{x}}) + \left\{ {\int\limits_{Y} {{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}}):{\mathbf{C}}:{\mathbf{A}}^{\rm K} ({\mathbf{y}})} dV_{y} } \right\}:{\mathbf{\rm K}}({\mathbf{x}}) \\ & {{\varvec{\Sigma}}}^{\rm skew} = \int_{Y} {{\mathbf{C}}\left( {\mathbf{y}} \right):\left( {{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}}):{\mathbf{E}}^{\rm sym} \left( {\mathbf{x}} \right) + {\mathbf{A}}^{{{\rm E}^{\rm skew} }} ({\mathbf{y}}) \cdot {\mathbf{E}}^{\rm skew} \left( {\mathbf{x}} \right) + {\mathbf{A}}^{\rm K} ({\mathbf{y}}):{\mathbf{K}}\left( {\mathbf{x}} \right)} \right)} :{\mathbf{A}}^{{E^{\rm skew} }} ({\mathbf{y}})\,dV_{y} \\ & \quad = \left\{ {\int\limits_{Y} {{\mathbf{A}}^{{E^{\rm skew} }} ({\mathbf{y}}):{\mathbf{C}}:{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}})} dV_{y} } \right\}:{\mathbf{E}}^{\rm sym} ({\mathbf{x}}) + \left\{ {\int\limits_{Y} {{\mathbf{A}}^{{E^{\rm skew} }} ({\mathbf{y}}):{\mathbf{C}}} :{\mathbf{A}}^{{E^{\rm skew} }} ({\mathbf{y}})dV_{y} } \right\} \cdot {\mathbf{E}}^{\rm skew} ({\mathbf{x}}) + \left\{ {\int\limits_{Y} {{\mathbf{A}}^{{E^{\rm skew} }} ({\mathbf{y}}):{\mathbf{C}}:{\mathbf{A}}^{\rm K} ({\mathbf{y}})} dV_{y} } \right\}:{\mathbf{\rm K}}({\mathbf{x}}) \\ & {\mathbf{M}} = \int_{Y} {{\mathbf{C}}\left( {\mathbf{y}} \right):\left( {{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}}):{\mathbf{E}}^{\rm sym} \left( {\mathbf{x}} \right) + {\mathbf{A}}^{{{\rm E}^{\rm skew} }} ({\mathbf{y}}) \cdot {\mathbf{E}}^{\rm skew} \left( {\mathbf{x}} \right) + {\mathbf{A}}^{\rm K} ({\mathbf{y}}):{\mathbf{K}}\left( {\mathbf{x}} \right)} \right)} :{\mathbf{A}}^{\rm K} ({\mathbf{y}})\,dV_{y} \\ & \quad = \left\{ {\int\limits_{Y} {{\mathbf{A}}^{\rm K} ({\mathbf{y}}):{\mathbf{C}}:{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}})} dV_{y} } \right\}:{\mathbf{E}}^{\rm sym} ({\mathbf{x}}) + \left\{ {\int\limits_{Y} {{\mathbf{A}}^{\rm K} ({\mathbf{y}}):{\mathbf{C}}} :{\mathbf{A}}^{{E^{\rm skew} }} ({\mathbf{y}})dV_{y} } \right\} \cdot {\mathbf{E}}^{\rm skew} ({\mathbf{x}}) + \left\{ {\int\limits_{Y} {{\mathbf{A}}^{\rm K} ({\mathbf{y}}):{\mathbf{C}}:{\mathbf{A}}^{\rm K} ({\mathbf{y}})} dV_{y} } \right\}:{\mathbf{\rm K}}({\mathbf{x}}) \\ \end{aligned}$$
(65)

These writings together with the \rm symmetry of the average quantities therein lead to the following expression of the effective micropolar moduli:

$$\begin{aligned} & {\mathbf{C}}^{\hom } = \int\limits_{Y} {{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}}):{\mathbf{C}}:{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}})dV_{y} , \, } {\mathbf{B}}^{\hom } = \int\limits_{Y} {{\mathbf{A}}^{{E^{\rm skew} }} ({\mathbf{y}}):{\mathbf{C}}:{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}})dV_{y} , \, } {\mathbf{D}}^{\hom } = \int\limits_{Y} {{\mathbf{A}}^{\rm K} ({\mathbf{y}}):{\mathbf{C}}:{\mathbf{A}}^{{{\rm E}^{\rm sym} }} ({\mathbf{y}})dV_{y} ,} \\ & {\mathbf{R}}^{\hom } = \int\limits_{Y} {{\mathbf{A}}^{{E^{\rm skew} }} ({\mathbf{y}}):{\mathbf{C}}:{\mathbf{A}}^{{E^{\rm skew} }} ({\mathbf{y}})dV_{y} ,} \, {\mathbf{G}}^{\hom } = \int\limits_{Y} {{\mathbf{A}}^{\rm K} ({\mathbf{y}}):{\mathbf{C}}:{\mathbf{A}}^{{E^{\rm skew} }} ({\mathbf{y}})dV_{y} ,} \, {\mathbf{S}}^{\hom } = \int\limits_{Y} {{\mathbf{A}}^{\rm K} ({\mathbf{y}}):{\mathbf{C}}:{\mathbf{A}}^{\rm K} ({\mathbf{y}})dV_{y} } \\ \end{aligned}$$
(66)

One can easily check from previous expressions the transpose property of the coupling tensors leading to the overall \rm symmetry of the effective stiffness rigidity tensor.

The strain energy of the effective micropolar continuum writes as the following bilinear form of the kinematic measures, as the result of the obtained homogenized constitutive law Eq. (66) and Euler’s theorem for quadratic functions in their tensor arguments (a linear theory at both microscopic and macroscopic levels is formulated):

$$\begin{aligned} & W_{M} \left( {{\mathbf{E}}^{\rm sym} ,\;{\mathbf{E}}^{\rm skew} ,\;{\mathbf{K}}} \right) = \frac{1}{2}{\mathbf{E}}^{\rm sym} :{\mathbf{C}}^{\hom } :{\mathbf{E}}^{\rm sym} + \frac{1}{2}{\mathbf{E}}^{\rm skew} \cdot {\mathbf{R}}^{\hom } \cdot {\mathbf{E}}^{\rm skew} + \frac{1}{2}{\mathbf{K}}:{\mathbf{S}}^{\hom } :{\mathbf{K}} + {\mathbf{E}}^{\rm sym} :\left( {{\mathbf{B}}^{\hom } + {\mathbf{B}}^{\hom,T} } \right) \cdot {\mathbf{E}}^{\rm skew} \\ & \quad + {\mathbf{E}}^{\rm sym} :\left( {{\mathbf{D}}^{\hom } + {\mathbf{D}}^{\hom,T} } \right):{\mathbf{K}} + {\mathbf{E}}^{\rm skew} \cdot \left( {{\mathbf{G}}^{\hom } + {\mathbf{G}}^{\hom ,T} } \right):{\mathbf{K}} = \left\langle {w_{\mu } \left( {{\varvec{\upvarepsilon}}} \right)} \right\rangle_{Y} = \left\langle {\frac{1}{2}{{\varvec{\upvarepsilon}}}\left( {\mathbf{y}} \right):{\mathbf{C}}\left( {\mathbf{y}} \right):{{\varvec{\upvarepsilon}}}\left( {\mathbf{y}} \right)} \right\rangle_{Y} \\ \end{aligned}$$
(67)

with \({\mathbf{S}}^{\hom }\), \({\mathbf{R}}^{\hom }\), and \({\mathbf{C}}^{\hom }\) therein the fourth-order tensor of couple stress moduli, the second-order tensor of anti\rm symmetric moduli, and the fourth-order tensor of micropolar moduli. \({\mathbf{B}}^{\hom }\) is a third-order tensor of coupling moduli for micropolar strain and rotation, \({\mathbf{D}}^{\hom }\) and \({\mathbf{G}}^{\hom }\) are fourth and third-order tensors of coupling moduli of micropolar strain and rotation with curvature, respectively. The presence of the sums \(\left( {{\mathbf{B}}^{\hom } + {\mathbf{B}}^{\hom,T} } \right)\), \(\left( {{\mathbf{D}}^{\hom } + {\mathbf{D}}^{\hom,T} } \right)\) and \(\left( {{\mathbf{G}}^{\hom } + {\mathbf{G}}^{\hom ,T} } \right)\) in Eq. (67) follows from the existence of a strain energy potential which guarantees the symmetry of the effective overall stiffness matrix, by Schwarz relation. The macroscopic micropolar energy density entails the following micropolar constitutive law at the macroscopic level, relating stress tensors \({{\varvec{\Sigma}}}^{\rm sym}\), \({{\varvec{\Sigma}}}^{\rm skew}\) and \({\mathbf{M}}\) to the micropolar strain, rotation and curvature kinematic measures, respectively:

$$\begin{aligned} & {{\varvec{\Sigma}}}^{\rm sym} : = \frac{{\partial W_{M} ({\mathbf{E}}^{\rm sym} ,\;{\mathbf{E}}^{\rm skew} ,\;{\mathbf{K}})}}{{\partial {\mathbf{E}}^{\rm sym} }} \equiv {\mathbf{C}}^{\hom } :{\mathbf{E}}^{\rm sym} + {\mathbf{B}}^{\hom } \cdot {\mathbf{E}}^{\rm skew} + {\mathbf{D}}^{\hom } :{\mathbf{K}}; \\ & {{\varvec{\Sigma}}}^{\rm skew} : = \frac{{\partial W_{M} ({\mathbf{E}}^{\rm sym} ,\;{\mathbf{E}}^{\rm skew} ,\;{\mathbf{K}})}}{{\partial {\mathbf{E}}^{\rm skew} }} \equiv {\mathbf{B}}^{\hom,T} :{\mathbf{E}}^{\rm sym} + {\mathbf{R}}^{\hom } \cdot {\mathbf{E}}^{\rm skew} + {\mathbf{G}}^{\hom } :{\mathbf{K}} \\ & {\mathbf{M}}: = \frac{{\partial W_{M} ({\mathbf{E}}^{\rm sym} ,\;{\mathbf{E}}^{\rm skew} ,\;{\mathbf{K}})}}{{\partial {\mathbf{K}}}} \equiv {\mathbf{D}}^{\hom ,T} :{\mathbf{E}}^{\rm sym} + {\mathbf{G}}^{\hom ,T} \cdot {\mathbf{E}}^{\rm skew} + {\mathbf{S}}^{\hom } :{\mathbf{K}} \\ \end{aligned}$$
(68)

Appendix 2.1: Effective engineering material parameters for tetrachiral lattice

Considering the plane strain condition, and according to the 2D Cauchy stiffness matrix \({\mathbf{C}}^{\hom }\), the effective behavior of the tetrachiral lattice can be considered as a monoclinic elastic solid with five independent coefficients in 2D. The compliance matrix for the case where the \(e_{3}\) plane is the plane of symmetry can be written:

$$\left( {\begin{array}{*{20}c} {E_{11}^{\rm sym} } \\ {E_{22}^{\rm sym} } \\ {E_{12}^{\rm sym} } \\ {E_{21}^{\rm sym} } \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {\frac{{1}}{{{\text{E}}_{{1}} }}} & {{ - }\frac{{{\upnu }_{{{21}}} }}{{{\text{E}}_{{2}} }}} & {\frac{{{\upeta }_{{{61}}} }}{{{\text{G}}_{{6}} }}} & {\frac{{{\upeta }_{{{61}}} }}{{{\text{G}}_{{6}} }}} \\ {{ - }\frac{{{\upnu }_{{{12}}} }}{{{\text{E}}_{{1}} }}} & {\frac{{1}}{{{\text{E}}_{{2}} }}} & {\frac{{{\upeta }_{{{62}}} }}{{{\text{G}}_{{6}} }}} & {\frac{{{\upeta }_{{{62}}} }}{{{\text{G}}_{{6}} }}} \\ {\frac{{{\upeta }_{{{16}}} }}{{{\text{E}}_{{1}} }}} & {\frac{{{\upeta }_{{{26}}} }}{{{\text{E}}_{{2}} }}} & {\frac{{1}}{{{\text{G}}_{{6}} }}} & {\frac{{1}}{{{\text{G}}_{{6}} }}} \\ {\frac{{{\upeta }_{{{16}}} }}{{{\text{E}}_{{1}} }}} & {\frac{{{\upeta }_{{{26}}} }}{{{\text{E}}_{{2}} }}} & {\frac{{1}}{{{\text{G}}_{{6}} }}} & {\frac{{1}}{{{\text{G}}_{{6}} }}} \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {\Sigma_{11}^{\rm sym} } \\ {\Sigma_{22}^{\rm sym} } \\ {\Sigma_{12}^{\rm sym} } \\ {\Sigma_{21}^{\rm sym} } \\ \end{array} } \right)$$

The symmetry of the compliance matrix requires that:

$$\frac{{{\upnu }_{{{21}}} }}{{{\text{E}}_{{2}} }}{ = }\frac{{{\upnu }_{{{12}}} }}{{{\text{E}}_{{1}} }}{;}\,\,\,\,\frac{{{\upeta }_{{{61}}} }}{{{\text{G}}_{{6}} }}{ = }\frac{{{\upeta }_{{{16}}} }}{{{\text{E}}_{{1}} }}{;}\,\,\,\,\frac{{{\upeta }_{{{62}}} }}{{{\text{G}}_{{6}} }}{ = }\frac{{{\upeta }_{{{26}}} }}{{{\text{E}}_{{2}} }}$$

So, the effective engineering material parameters are evaluated as:

$$\begin{aligned} & {\text{E}}_{{1}} =\frac{{{\text{2C}}_{{4}}^{{2}} \left( {{\text{C}}_{{1}} {\text{ + C}}_{{2}} } \right){\text{ + C}}_{{3}} \left( {{\text{C}}_{{2}}^{{2}} {\text{ - C}}_{{1}}^{{2}} } \right)}}{{{\text{C}}_{{4}}^{{2}} {\text{ - C}}_{{1}} {\text{C}}_{{3}} }}{;}\,\,\,{\text{E}}_{{1}} ={\text{E}}_{{2}} \\ & {\upnu }_{{{12}}} = \frac{{\left( {{\text{C}}_{{4}}^{{2}} {\text{ + C}}_{{2}} {\text{C}}_{{3}} } \right)\left( {{\text{C}}_{{1}} {\text{C}}_{{3}} {\text{ - C}}_{{4}}^{{2}} } \right)}}{{\left( {{\text{C}}_{{1}} {\text{ + C}}_{{2}} } \right)^{{2}} \left( {{\text{2C}}_{{4}}^{{2}} {\text{ - C}}_{{1}} {\text{C}}_{{3}} {\text{ + C}}_{{2}} {\text{C}}_{{3}} } \right)^{{2}} }}{;}\,\,\,{\upnu }_{{{12}}} ={{\upnu }}_{{{21}}} \, \\ & {\text{G}}_{{6}} =\frac{{{\text{2C}}_{{4}}^{{2}} {\text{ - C}}_{{1}} {\text{C}}_{{3}} {\text{ + C}}_{{2}} {\text{C}}_{{3}} }}{{{\text{C}}_{{2}} {\text{ - C}}_{{1}} }} \\ & {\upeta }_{{{16}}} = \frac{{{\text{C}}_{{4}} \left( {{\text{C}}_{{1}} {\text{C}}_{{3}} {\text{ - C}}_{{4}}^{{2}} } \right)}}{{\left( {{\text{C}}_{{1}} {\text{ + C}}_{{2}} } \right)\left( {{\text{2C}}_{{4}}^{{2}} {\text{ - C}}_{{1}} {\text{C}}_{{3}} {\text{ + C}}_{{2}} {\text{C}}_{{3}} } \right)^{{2}} }}{;}\,\,\,\,{\upeta }_{{{16}}} ={{ - \upeta }}_{{{26}}} \\ & {\upeta }_{{{61}}} = \frac{{{\text{C}}_{{4}} \left( {{\text{C}}_{{1}} {\text{ - C}}_{{2}} } \right)}}{{\left( {{\text{2C}}_{{4}}^{{2}} {\text{ - C}}_{{1}} {\text{C}}_{{3}} {\text{ + C}}_{{2}} {\text{C}}_{{3}} } \right)^{{2}} }}{;}\,\,\,\,{\upeta }_{{{61}}} ={{ - \upeta }}_{{{62}}} \\ \end{aligned}$$

Appendix 2.2: Effective engineering material parameters for Anti-tetrachiral lattice

Considering the plane strain condition, and according to the 2D Cauchy stiffness matrix \({\mathbf{C}}^{\hom }\) the effective behavior of the anti-tetrachiral lattice can be considered as a orthotropic elastic solid with three independent coefficients in 2D. The compliance matrix for the case where the \(e_{3}\) plane is the plane of symmetry can be written:

$$\left( {\begin{array}{*{20}c} {E_{11}^{\rm sym} } \\ {E_{22}^{\rm sym} } \\ {E_{12}^{\rm sym} } \\ {E_{21}^{\rm sym} } \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {\frac{{1}}{{{\text{E}}_{{1}} }}} & {{ - }\frac{{{\upnu }_{{{21}}} }}{{{\text{E}}_{{2}} }}} & 0 & 0 \\ {{ - }\frac{{{\upnu }_{{{12}}} }}{{{\text{E}}_{{1}} }}} & {\frac{{1}}{{{\text{E}}_{{2}} }}} & 0 & 0 \\ 0 & 0 & {\frac{{1}}{{{\text{G}}_{{6}} }}} & {\frac{{1}}{{{\text{G}}_{{6}} }}} \\ 0 & 0 & {\frac{{1}}{{{\text{G}}_{{6}} }}} & {\frac{{1}}{{{\text{G}}_{{6}} }}} \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {\Sigma_{11}^{\rm sym} } \\ {\Sigma_{22}^{\rm sym} } \\ {\Sigma_{12}^{\rm sym} } \\ {\Sigma_{21}^{\rm sym} } \\ \end{array} } \right)$$

The symmetry of the compliance matrix requires that:

$$\frac{{{\upnu }_{{{21}}} }}{{{\text{E}}_{{2}} }}{ = }\frac{{{\upnu }_{{{12}}} }}{{{\text{E}}_{{1}} }}{;}$$

So, the effective engineering material parameters are evaluated as:

$$\begin{aligned} & {\text{E}}_{{1}} = \frac{{\left( {{\text{C}}_{1}^{{2}} {\text{ - C}}_{2}^{{2}} } \right)}}{{{\text{C}}_{{1}} }}{;}\,\,\,{\text{E}}_{{1}} ={\text{E}}_{{2}} \\ & {\upnu }_{{{12}}} = \frac{{{\text{C}}_{{1}} {\text{C}}_{2} }}{{\left( {{\text{C}}_{1}^{2} {\text{ - C}}_{2}^{2} } \right)^{{2}} }}{;}\,\,\,{\upnu }_{{{12}}} ={{ \upnu }}_{{{21}}} \, \\ & {\text{G}}_{{6}}= {\text{C}}_{3} \\ \end{aligned}$$

Appendix 3: Boundary constraint equations and corresponding classical rigidity components

Rigidity components

Periodic boundary conditions (\(E_{ij} = 1;\,\,\,\,i,j = x,\,y,\,z\))

\(C_{11} = \frac{{2U^{cell} }}{{V^{cell} }}\)

\(u_{x}^{F2} - u_{x}^{F1} - l_{x}\epsilon_{xx} = 0,\,\,\,\,\,u_{y}^{F4} - u_{y}^{F3} = 0,\,\,\,\,u_{z}^{F6} - u_{z}^{F5} = 0\)

\(C_{22} = \frac{{2U^{cell} }}{{V^{cell} }}\)

\(u_{x}^{F2} - u_{x}^{F1} = 0,\,\,\,\,\,u_{y}^{F4} - u_{y}^{F3} - l_{y}\epsilon_{yy} = 0,\,\,\,\,u_{z}^{F6} - u_{z}^{F5} = 0\)

\(C_{33} = \frac{{2U^{cell} }}{{V^{cell} }}\)

\(u_{x}^{F2} - u_{x}^{F1} = 0,\,\,\,\,\,u_{y}^{F4} - u_{y}^{F3} = 0,\,\,\,\,u_{z}^{F6} - u_{z}^{F5} - l_{z}\epsilon_{zz} = 0\)

\(C_{44} = \frac{{U^{cell} }}{{2V^{cell} }}\)

\(u_{x}^{F2} - u_{x}^{F1} - l_{x}\epsilon_{xz} = 0,\,\,\,\,\,u_{y}^{F4} - u_{y}^{F3} = 0,\,\,\,\,u_{z}^{F6} - u_{z}^{F5} - l_{z}\epsilon_{xz} = 0\)

\(C_{55} = \frac{{U^{cell} }}{{2V^{cell} }}\)

\(u_{x}^{F2} - u_{x}^{F1} = 0,\,\,\,\,\,u_{y}^{F4} - u_{y}^{F3} - l_{y}\epsilon_{yz} = 0,\,\,\,\,u_{z}^{F6} - u_{z}^{F5} - l_{z}\epsilon\epsilon_{yz} = 0\)

\(C_{66} = \frac{{U^{cell} }}{{2V^{cell} }}\)

\(u_{x}^{F2} - u_{x}^{F1} - l_{x}\epsilon_{xy} = 0,\,\,\,\,\,u_{y}^{F4} - u_{y}^{F3} - l_{y}\epsilon_{xy} = 0,\,\,\,\,u_{z}^{F6} - u_{z}^{F5} = 0\)

\(C_{12} = \frac{{U^{cell} }}{{V^{cell} }} - \frac{{C_{11} + C_{22} }}{2}\)

\(u_{x}^{F2} - u_{x}^{F1} - l_{x}\epsilon_{xx} = 0,\,\,\,\,\,u_{y}^{F4} - u_{y}^{F3} - l_{y}\epsilon_{yy} = 0,\,\,\,\,u_{z}^{F6} - u_{z}^{F5} = 0\)

\(C_{13} = \frac{{U^{cell} }}{{V^{cell} }} - \frac{{C_{11} + C_{33} }}{2}\)

\(u_{x}^{F2} - u_{x}^{F1} - l_{x}\epsilon_{xx} = 0,\,\,\,\,\,u_{y}^{F4} - u_{y}^{F3} = 0,\,\,\,\,u_{z}^{F6} - u_{z}^{F5} - l_{z}\epsilon_{zz} = 0\)

\(C_{14} = \frac{{U^{cell} }}{{2V^{cell} }} - \frac{{C_{11} }}{4} - C_{44}\)

\(u_{x}^{F2} - u_{x}^{F1} - l_{x}\epsilon_{xx} = 0,\,\,\,\,u_{z}^{F2} - u_{z}^{F1} - l_{x}\epsilon_{xz} = 0,\, u_{y}^{F4} - u_{y}^{F3} = 0,\,\,\,\,u_{z}^{F6} - u_{z}^{F5} = 0,\,\,\,\,u_{x}^{F6} - u_{x}^{F5} - l_{z}\epsilon_{xz} = 0\)

\(C_{15} = \frac{{U^{cell} }}{{2V^{cell} }} - \frac{{C_{11} }}{4} - C_{55}\)

\(u_{x}^{F2} - u_{x}^{F1} - l_{x}\epsilon_{xx} = 0,\,\,u_{y}^{F4} - u_{y}^{F3} = 0\,,\, u_{y}^{F4} - u_{y}^{F3} - l_{y}\epsilon_{yz} = 0,\,\,\,\,u_{z}^{F6} - u_{z}^{F5} = 0,\,\,\,\,u_{x}^{F6} - u_{x}^{F5} - l_{y}\epsilon_{yz} = 0\)

\(C_{16} = \frac{{U^{cell} }}{{2V^{cell} }} - \frac{{C_{11} }}{4} - C_{66}\)

\(u_{x}^{F2} - u_{x}^{F1} - l_{x}\epsilon_{xx} = 0,\,\,\,\,u_{y}^{F2} - u_{y}^{F1} - l_{x}\epsilon_{xy} = 0,\, u_{y}^{F4} - u_{y}^{F3} = 0,\,\,\,\,u_{x}^{F4} - u_{x}^{F3} - l_{y}\epsilon_{xy} = 0,\,\,\,\,u_{z}^{F6} - u_{z}^{F5} = 0\)

\(C_{23} = \frac{{U^{cell} }}{{V^{cell} }} - \frac{{C_{22} + C_{33} }}{2}\)

\(u_{x}^{F2} - u_{x}^{F1} = 0,\,\,\,\,u_{y}^{F2} - u_{y}^{F1} - l_{y}\epsilon_{yy} = 0,\,\,\,\,\,u_{z}^{F6} - u_{z}^{F5} - l_{z}\epsilon_{zz} = 0\)

\(C_{24} = \frac{{U^{cell} }}{{2V^{cell} }} - \frac{{C_{22} }}{4} - C_{44}\)

\(u_{x}^{F2} - u_{x}^{F1} = 0,\,\,\,\,u_{z}^{F2} - u_{z}^{F1} - l_{x}\epsilon_{xz} = 0,\,u_{y}^{F4} - u_{y}^{F3} - l_{y}\epsilon_{yy} = 0,\,\,\,\,u_{z}^{F6} - u_{z}^{F5} = 0,\,\,\,\,u_{x}^{F6} - u_{x}^{F5} - l_{z}\epsilon_{xz} = 0\)

\(C_{25} = \frac{{U^{cell} }}{{2V^{cell} }} - \frac{{C_{22} }}{4} - C_{55}\)

\(u_{x}^{F2} - u_{x}^{F1} = 0,\,\,u_{y}^{F4} - u_{y}^{F3} - l_{y}\epsilon_{yy} = 0\,,\, u_{y}^{F4} - u_{y}^{F3} - l_{y}\epsilon_{yz} = 0,\,\,\,\,u_{z}^{F6} - u_{z}^{F5} = 0,\,\,\,\,u_{x}^{F6} - u_{x}^{F5} - l_{y}\epsilon_{yz} = 0\)

\(C_{26} = \frac{{U^{cell} }}{{2V^{cell} }} - \frac{{C_{22} }}{4} - C_{66}\)

\(u_{x}^{F2} - u_{x}^{F1} = 0,\,\,\,\,u_{y}^{F2} - u_{y}^{F1} - l_{x}\epsilon_{xy} = 0,\, u_{y}^{F4} - u_{y}^{F3} - l_{y}\epsilon_{yy} = 0,\,\,\,\,u_{x}^{F4} - u_{x}^{F3} - l_{y}\epsilon_{xy} = 0,\,\,\,\,u_{z}^{F6} - u_{z}^{F5} = 0\)

\(C_{34} = \frac{{U^{cell} }}{{2V^{cell} }} - \frac{{C_{33} }}{4} - C_{44}\)

\(u_{x}^{F2} - u_{x}^{F1} = 0,\,\,\,\,u_{z}^{F2} - u_{z}^{F1} - l_{x}\epsilon_{xz} = 0,\,\,\,\,u_{y}^{F4} - u_{y}^{F3} = 0, u_{z}^{F6} - u_{z}^{F5} - l_{z}\epsilon_{zz} = 0,\,\,\,\,u_{x}^{F6} - u_{x}^{F5} - l_{z}\epsilon_{xz} = 0\)

\(C_{35} = \frac{{U^{cell} }}{{2V^{cell} }} - \frac{{C_{33} }}{4} - C_{55}\)

\(u_{x}^{F2} - u_{x}^{F1} = 0,\,\,u_{y}^{F4} - u_{y}^{F3} = 0\,,\,u_{y}^{F4} - u_{y}^{F3} - l_{y}\epsilon_{yz} = 0, u_{z}^{F6} - u_{z}^{F5} - l_{z}\epsilon_{zz} = 0,\,\,\,\,u_{x}^{F6} - u_{x}^{F5} - l_{y}\epsilon_{yz} = 0\)

\(C_{36} = \frac{{U^{cell} }}{{2V^{cell} }} - \frac{{C_{33} }}{4} - C_{66}\)

\(u_{x}^{F2} - u_{x}^{F1} = 0,\,\,\,\,u_{y}^{F2} - u_{y}^{F1} - l_{x}\epsilon_{xy} = 0,\,\,\,\,u_{y}^{F4} - u_{y}^{F3} = 0,u_{x}^{F4} - u_{x}^{F3} - l_{y}\epsilon_{xy} = 0,\,\,\,\,u_{z}^{F6} - u_{z}^{F5} - l_{z}\epsilon_{zz} = 0\)

\(C_{45} = \frac{{U^{cell} }}{{4V^{cell} }} - \frac{{C_{44} + C_{55} }}{2}\)

\(u_{x}^{F2} - u_{x}^{F1} = 0,\,\,\,\,u_{z}^{F2} - u_{z}^{F1} - l_{x}\epsilon_{xz} = 0,\,\,\,\, u_{y}^{F4} - u_{y}^{F3} = 0,\,\,\,u_{z}^{F4} - u_{z}^{F3} - l_{y}\epsilon_{yz} = 0,\,\,\, u_{z}^{F6} - u_{z}^{F5} = 0,\,\,\,\,u_{x}^{F6} - u_{x}^{F5} - l_{z}\epsilon_{xz} = 0,\,\,\,\,u_{y}^{F6} - u_{y}^{F5} - l_{z}\epsilon_{yz} = 0\)

\(C_{46} = \frac{{U^{cell} }}{{4V^{cell} }} - \frac{{C_{44} + C_{66} }}{2}\)

\(u_{x}^{F2} - u_{x}^{F1} = 0,\,\,\,\,u_{y}^{F2} - u_{y}^{F1} - l_{x}\epsilon_{xy} = 0,\,\,\,u_{z}^{F2} - u_{z}^{F1} - l_{x}\epsilon_{xz} = 0, u_{y}^{F4} - u_{y}^{F3} = 0,\,\,\,u_{x}^{F4} - u_{x}^{F3} - l_{y}\epsilon_{xy} = 0,\,\,\, u_{z}^{F6} - u_{z}^{F5} = 0,\,\,\,\,u_{x}^{F6} - u_{x}^{F5} - l_{z}\epsilon_{xz} = 0\)

\(C_{56} = \frac{{U^{cell} }}{{4V^{cell} }} - \frac{{C_{55} + C_{66} }}{2}\)

\(u_{x}^{F2} - u_{x}^{F1} = 0,\,\,\,\,u_{y}^{F2} - u_{y}^{F1} - l_{x}\epsilon_{xy} = 0,\,\,\,\, u_{y}^{F4} - u_{y}^{F3} = 0,\,\,\,u_{x}^{F4} - u_{x}^{F3} - l_{y}\epsilon_{xy} = 0,\,\,\,u_{z}^{F4} - u_{z}^{F3} - l_{y}\epsilon_{yz} = 0, u_{z}^{F6} - u_{z}^{F5} = 0,\,\,\,\,u_{y}^{F6} - u_{y}^{F5} - l_{z}\epsilon\epsilon_{yz} = 0\)

In above table, the following notations are introduced: the superscript of the displacement indicates the faces over the boundary of the unit cells shown in Fig. 4, and the subscript of the displacement field indicates the displacement component. As an example of the notations indicated in Appendix 1 and Fig. 4, \(u_{x}^{F2}\) shows the displacement of the nodal points on the face \(F_{2}\) in ‘x’ direction. Also, scalar quantities \(U^{cell}\) and \(V^{cell}\) are the strain energy and volume of the unit cell, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, S.E., Nasimsobhan, M., Ganghoffer, J.F. et al. Chiral Cosserat model for architected materials constructed by homogenization. Meccanica 56, 2547–2574 (2021). https://doi.org/10.1007/s11012-021-01381-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-021-01381-9

Keywords

Navigation