Skip to main content
Log in

An efficient photocatalytic degradation of nitrophenols using TiO2 as a heterogeneous photo-Fenton catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Nano TiO2 was synthesized and characterized by common analytical techniques. From the analysis, it is observed that HRTEM shows a particle size of 23 nm and crystallinity of a synthesized sample. The photocatalytic degradation of nitrophenols (4-nitrophenol, 2,4-dinitrophenol and 2,4,6-trinitrophenol [picric acid]) with TiO2 coupled with Fenton reagent [Fe2+/H2O2] is studied using UV light (Wavelengths 254, 365 and 390 nm), visible and sunlight at different pHs (3, 7 and 10). The experimental results confirmed that pH 3 is the optimum value for the effective degradation of all the three nitrophenol compounds. At pH 3, the degradation of nitrophenols separately with TiO2 and Fenton reagent is studied under the UV light with the wavelength of 254 nm. The results obtained are compared and it is observed that the photocatalytic degradation of nitrophenols in the presence of TiO2 combined with Fenton reagents shows higher activity than that of the pure TiO2 nanoparticles. The optimum pH value (pH 3), FeSO4⋅7H2O concentration (1 mM), H2O2 concentration (20 mM), catalyst dosage (50 mg/L) lead to the complete degradation of all the three nitrophenols (4-nitrophenol, 2,4-dinitrophenol and 2,4,6-trinitrophenol [picric acid]) of concentration 200 mg/L within the time period of 12 min, 15 min and 15 min, respectively, under the UV light of wavelength 254 nm.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The analytical spectrum for the synthesised material are available.

References

  1. Fatima R, Afridi MN, Kumar V, Lee J, Ali I, Kim KH, Kim JO (2019) Photocatalytic degradation performance of various types of modified TiO2 against nitrophenols in aqueous systems. J Clean Prod 231:899–912. https://doi.org/10.1016/j.jclepro.2019.05.292

    Article  CAS  Google Scholar 

  2. Xiong Z, Zhang H, Zhang W, Lai B, Yao G (2019) Removal of nitrophenols and their derivatives by chemical redox: a review. Chem Eng J 359:13–31. https://doi.org/10.1016/j.cej.2018.11.111

    Article  CAS  Google Scholar 

  3. Ismail M, Khan MI, Khan SB, Akhtar K, Khan MA, Asiri AM (2018) Catalytic degradation of picric acid, nitrophenols and organic azo dyes via green synthesized plant supported Ag nanoparticles. J Mol Liq 268:87–101. https://doi.org/10.1016/j.molliq.2018.07.030

    Article  CAS  Google Scholar 

  4. Singh B, Kaur J, Singh K (2011) 2,4,6 – Trinitro phenol degradation by Bacillus cereus isolated from a firing range. Biotechnol Lett 33:2411–2415

    Article  CAS  Google Scholar 

  5. Hariharan D, Christy AJ, Mayandi J, Nehru LC (2018) Visible light active catalyst: hydrothermal green synthesized TiO2 NPs for degradation of picric acid. Mater Lett 222:45–79. https://doi.org/10.1016/j.matlet.2018.03.109

    Article  CAS  Google Scholar 

  6. Muniandy SS, Kaus NHM, Jiang ZT, Altarawneh M, Lee HL (2017) Green synthesis of mesoporous anatase TiO2 nanoparticles and their photocatalytic activities. RSC Adv 7:48083–48094

    Article  CAS  Google Scholar 

  7. Lachheb H, Houas A, Hermann JM (2008) Photocatalytic degradation of poly nitrophenols on various commercial suspended or deposited Titania catalyst using Artificial and Solar light. Int J Photoenergy. https://doi.org/10.1155/2008/497895

    Article  Google Scholar 

  8. Kar P, Zhang Y, Mahdi N, Thakur UK, Wiltshire BD, Kisslinger R, Shankar K (2017) Heterojunctions of mixed phase TiO2 nanotubes with Cu, CuPt, and Pt nanoparticles: interfacial band alignment and visible light photo electrochemical activity. Nanotechnology 29:014002

    Article  Google Scholar 

  9. Pedroza-Herreraa G, Medina-Ramírez IE, Lozano-Álvarez JA, Rodil SE (2020) Evaluation of the photocatalytic activity of copper doped TiO2 nanoparticles for the purification and/or disinfection of industrial effluents. Catal 341:37–48. https://doi.org/10.1016/j.cattod.2018.09.017

    Article  CAS  Google Scholar 

  10. Dulova N, Trapido M, Dulov A (2011) Catalyst degradation of picric acid by heterogeneous Fenton based processes. Environ Technol 32:439–446. https://doi.org/10.1080/09593330.2010.501823

    Article  CAS  PubMed  Google Scholar 

  11. Rodrigues CSD, Borges RAC, Lima VN, Madeira LM (2018) p-Nitrophenol degradation by Fenton’s oxidation in a bubble column reactor. J Environ Manage 206:774–785. https://doi.org/10.1016/j.jenvman.2017.11.032

    Article  CAS  PubMed  Google Scholar 

  12. Liou MJ, Lu MC, Chen JN (2003) Oxidation of explosives by Fenton and Photo Fenton process. Water Res 37:3172–3179. https://doi.org/10.1016/S0043-1354(03)00158-1

    Article  CAS  PubMed  Google Scholar 

  13. Doumic LI, Genova M, Zerjav G, Pintar A, Cassanello MC, Rameo HE, Ayude MA (2019) Hierarchically structure TiO2 based composite for Fenton type oxidation process. J Environ Manage 236:591–602. https://doi.org/10.1016/j.jenvman.2019.02.026

    Article  CAS  PubMed  Google Scholar 

  14. Chu Y, Miao B, Zhang X, Lv R (2020) Heterogeneous electro-Fenton-like oxidation for the degradation of 4-nitrophenol characterized by immobilized Fe(III): performance, mechanism and chlorinated organic compounds formation. J Water Process Eng 38:101662. https://doi.org/10.1016/j.jwpe.2020.101662

    Article  Google Scholar 

  15. Ebrahiem EE, Al-Maghrabi MN, Mobarki AR (2017) Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arab J Chem 10:1674–1679. https://doi.org/10.1016/j.arabjc.2013.06.012

    Article  CAS  Google Scholar 

  16. Mokhbi Y, Korichi M, Akchiche Z (2019) Combined photocatalytic and Fenton oxidation for oily wastewater treatment. Appl Water Sci 9:35

    Article  Google Scholar 

  17. Kim HE, Lee J, Lee H, Lee C (2012) Synergistic effects of TiO2 photcatalysis in combination with Fenton like reactions on oxidation of organic compounds at circumneutral pH. Appl Catal B115–116:219–224. https://doi.org/10.1016/j.apcatb.2011.12.027

    Article  CAS  Google Scholar 

  18. Banic N, Abramovic B, Krstic J, Sojic D, Loncarevic D, Zheleva ZC, Guzsvany V (2011) Photodegradation of thiacloprid using Fe/TiO2 as a heterogeneous photo-Fenton catalyst. Appl Catal B 107:363–371. https://doi.org/10.1016/j.apcatb.2011.07.037

    Article  CAS  Google Scholar 

  19. Singh J, Sharma S, Aanchal BS (2019) Synthesis of Fe2O3/TiO2 monoliths for the enhanced degradation of industrial dye and pesticide via photo-Fenton catalysis. J Photochem Photobiol 376:32–42. https://doi.org/10.1016/j.jphotochem.2019.03.004K.H

    Article  CAS  Google Scholar 

  20. Raji A, Pandiaraj KN, Kandavelu V, Vasu D, Saravanan D (2020) Efficiency evaluation of the photocatalytic degradation of telmisartan anti-hypersensitive drug with Fenton, photo –Fenton and recyclable TiO2 heterogeneous catalyst. Reac Kinet Mech Cat 130:1141–1154. https://doi.org/10.1007/s11144-020-01806-8

    Article  CAS  Google Scholar 

  21. Gnanaprakasam A, Sivakumar VM, Sivayogavalli PL, Thirumarimurugan M (2015) Characterization of TiO2 and ZnO nanoparticles and their applications in photocatalytic degradation of azodyes. Ecotoxicol Environ Safety 121:121–125. https://doi.org/10.1016/j.ecoenv.2015.04.043

    Article  CAS  PubMed  Google Scholar 

  22. Kumar P, Parthiba SC, Singh M (2016) Hydrothermal synthesis of nanocrystals of Titania from TTIP and powder TiO2. J Nanosci Nanotechnol 2(4):195–196

    Google Scholar 

  23. Abdi P, Farzi A, Akarimi A (2017) Application of a hybrid enzymatic and photo-Fenton process for investigation of azo dye decolorization on TiO2/metal-foam catalyst. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2016.11.022

    Article  Google Scholar 

  24. Li W, Liang R, Hu A, Huanga Z, Zhou YN (2014) Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC Adv 4:36959

    Article  CAS  Google Scholar 

  25. Gao Q, Wu X, Fan Y, Zhou X (2012) Low temperature synthesis and characterization of rutile TiO2-coated mica titania pigments. Dyes Pigm 95:534–539. https://doi.org/10.1016/j.dyepig.2012.06.006

    Article  CAS  Google Scholar 

  26. Dai S, Wu Y, Sakai T, Du Z, Sakai H, Abe M (2010) Preparation of highly crystalline TiO2 nanostructures by acid-assisted hydrothermal treatment of hexagonal structured nanocrystallinetitania/cetyltrimethyammonium bromide Nanoskeleton. Nanoscale Res Lett 5(11):1829–1835

    Article  CAS  Google Scholar 

  27. Choi HC, Jung YM, Kim SB (2005) Size effects in the Raman spectra of TiO2 nanoparticles. Vib Spectrosc 37:33–38. https://doi.org/10.1016/j.vibspec.2004.05.006

    Article  CAS  Google Scholar 

  28. Komaraiah D, Radha E, James J, Kalarikkal N, Sivakumar J, Raman Reddy MV, Sayanna R (2019) Effect of particle size and dopant concentration on the Raman and the photoluminescence spectra of TiO2: Eu3+nanophosphor thin films. J Lumin 211:320–333. https://doi.org/10.1016/j.jlumin.2019.03.050

    Article  CAS  Google Scholar 

  29. Kibasomba PM, Dhlamini S, Maaza M, Liu CP, Rashad MM, Rayan DA, Mwakikunga BW (2018) Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: the revisiting of the Williamson-Hall plot method. Results Phys 9:628–635. https://doi.org/10.1016/j.rinp.2018.03.008

    Article  Google Scholar 

  30. Porras CL, Teran AT, Becerra OV, Yoshida MM, Villalobos MR, Guaderrama MG, Martinez JAA (2015) Low temperature synthesis and characterization of anatase TiO2 nanoparticle by an acid assisted sol-gel method. J Alloys Compd 647:627–636. https://doi.org/10.1016/j.jallcom.2015.06.041

    Article  CAS  Google Scholar 

  31. Ba-Abbad MM, Kadhum AAH, Mohamad AB, Takriff MS, Sopian K (2012) Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int J Electrochem Sci 7:4871–4888

    CAS  Google Scholar 

  32. Hassan ME, Chen Y, Liu G, Zhu D, Cai J (2016) Heterogeneous photo-Fenton degradation of methyl orange by Fe2O3/TiO2 nanoparticles under visible light. J Water Process 12:52–57. https://doi.org/10.1016/j.jwpe.2016.05.014

    Article  Google Scholar 

  33. Nahar MS, Hasegawa K, Kagaya S (2006) Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles. Chemosphere 65(11):1976–1982. https://doi.org/10.1016/j.chemosphere.2006.07.002

    Article  CAS  PubMed  Google Scholar 

  34. Xu T, Liu Y, Ge F, Liu L, Ouyang Y (2013) Application of response surface methodology for optimization of azocarmine B removal by heterogeneous photo-Fenton process using hydroxyl-iron-aluminium pillared bentonite. Appl Surf Sci 280:926–932. https://doi.org/10.1016/j.apsusc.2013.05.098

    Article  CAS  Google Scholar 

  35. Tanaka K, Luesaiwong W, Hisanaga T (1997) A Photocatalytic degradation of mono-, di- and trinitrophenol in aqueous TiO2 suspension. J Mol Catal A Chem 122(1):67–74. https://doi.org/10.1016/S1381-1169(96)00509-2

    Article  CAS  Google Scholar 

  36. Di Paola A, Augugliaro V, Palmisano L, Pantaleo L, Savinov E (2003) Heterogeneous photocatalytic degradation of nitrophenols. J Photochem Photobiol A155(1–3):207–214. https://doi.org/10.1016/S1010-6030(02)00390-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank SRM Valliammai Engineering College and Sri Sairam Institute of Technology for providing the research lab facilities. Also the authors thank the Nanotechnology Research Center, SRM IST for providing analytical support.

Funding

No funds, grants or other support was received by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anbuchezhiyan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Ethical approval

All co-authors ensure that accepted principles of ethical and professional conduct have been followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anusha, B., Anbuchezhiyan, M. & Sribalan, R. An efficient photocatalytic degradation of nitrophenols using TiO2 as a heterogeneous photo-Fenton catalyst. Reac Kinet Mech Cat 134, 501–515 (2021). https://doi.org/10.1007/s11144-021-02064-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02064-y

Keywords

Navigation