Skip to main content
Log in

Behavior to UV irradiation of the polyurethanes containing azobenzene side groups in the main chains structure

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The present study investigates new polyurethanes with improved stability to UV radiation by the inclusion of azobenzene side groups on the polymer main chain. These polyurethanes were prepared from a prepolymer (polycaprolactone diol and 1,6-hexamethylene diisocyanate) with 2,4-dihydroxyazobenzene (Sudan Orange G) as a chain extender. A polyurethane chain-extended with 1,4-butanediol was prepared for comparison. The paper studies how the amount and structure of the chain extenders affect the polymer structure and the mechanical, surface and thermal properties of the obtained polyurethanes, before and after subjection to UV irradiation, All the synthesized polyurethanes showed good thermal stability up to 250 ºC. In terms of mechanical properties, the samples exhibit good tensile strength and elongation at break. The surface contact angle increases with chain extender content and UV exposure time. The inclusion of azobenzene groups into the polyurethane main chain makes these polyurethanes appropriate for use in colored polymer materials with good UV radiation stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Engels H-W, Pirkl H-G, Albers R, Albach RW, Krause J, Hoffmann A, Casselmann H, Dormish J (2013) Polyurethanes: Versatile materials and sustainable problem solvers for today’s challenges. Angew Chem Int Ed 52:9422–9441

    Article  CAS  Google Scholar 

  2. Oprea S, Potolinca VO, Oprea V (2020) Synthesis and characterization of novel polyurethane elastomers that include curcumin with various cross-linked structures. J Polym Res 27:60

    Article  CAS  Google Scholar 

  3. Chen HM, Li XP, Chen J, He XD, Huang WM, Zhu K, Yu WH, Ni HL, Zhao KQ, Hu P (2021) Unified method to prepare thermoplastic/thermoset soft polyurethanes reshape-able around room temperature on-demand. J Polym Res 28:201

    Article  CAS  Google Scholar 

  4. Boisaubert P, Kebir N, Schuller A-S, Burel F (2020) Photo-crosslinked coating from an acrylate terminated non-isocyanate polyurethane (NIPU) and reactive diluent. Eur Polym J 138:109961

  5. Doley S, Bora A, Saikia P, Ahmed S, Dolui SK (2021) Blending of cyclic carbonate based on soybean oil and glycerol: a non-isocyanate approach towards the synthesis of polyurethane with high performance. J Polym Res 28:146

    Article  CAS  Google Scholar 

  6. Oprea S, Potolinca VO, Oprea V (2018) Influence of the hydroquinone ether moieties and Bisphenol A glycerolate diacrylate on the UV stability behavior of new polyurethane materials. J Polym Res 25:79

    Article  Google Scholar 

  7. Parcheta P, Glowinska E, Datta J (2020) Effect of bio-based components on the chemical structure, thermal stability and mechanical properties of green thermoplastic polyurethane elastomers. Eur Polym J 123:109422

  8. Zhang T, Xie F, Motuzas J, Bryant P, Kurusingal V, Colwell JM, Laycock B (2018) Early-stage photodegradation of aromatic poly(urethane-urea) elastomers. Polym Degrad Stab 157:181–198

    Article  CAS  Google Scholar 

  9. Liu L, Wu Y, Zhu Z (2017) Internal structure and crystallinity investigation of segmented thermoplastic polyurethane elastomer degradation in supercritical methanol. Polym Degrad Stab 140:17–24

    Article  CAS  Google Scholar 

  10. Kojio K, Nozaki S, Takahara A, Yamasak S (2020) Influence of chemical structure of hard segments on physical properties of polyurethane elastomers: a review. J Polym Res 27:140

    Article  CAS  Google Scholar 

  11. Oprea S (2010) Dependence of fungal biodegradation of PEG/castor oil-based polyurethane elastomers on the hard-segment structure. Polym Degrad Stab 95:2396–2404

    Article  CAS  Google Scholar 

  12. Oprea S, Timpu D, Oprea V (2019) Design-properties relationships of polyurethanes elastomers depending on different chain extenders structures. J Polym Res 26:117

    Article  Google Scholar 

  13. Clemitson IR (2015) Castable polyurethane elastomers, 2nd Edition Published, by CRC Press ISBN 9781138809208

  14. Wang H, Liu Y, Sun B, Huang S, Tian J (2013) Aging behavior of the polyether polyurethane films irradiated by UV. Adv Mater Res 748:16–21

    Article  CAS  Google Scholar 

  15. Govorcin Bajsic E, Zdraveva E (2018) Photooxidative stability of polyurethane/ polycarbonate blends. Chem Biochem Eng Q 32:191–203

    Article  Google Scholar 

  16. Oprea S, Oprea V (2002) Mechanical behavior during different weathering tests of the polyurethane elastomers films. Eur Polym J 38:1205–1211

    Article  CAS  Google Scholar 

  17. Zia KM, Bhatti IA, Barikani M, Zuber M (2008) Surface characteristics of UV-irradiated polyurethane elastomers extended with α, ω-alkane diols. Appl Surf Sci 254:6754–6761

    Article  CAS  Google Scholar 

  18. Xie F, Zhang T, Bryant P, Kurusingal V, Colwell JM, Laycock B (2019) Degradation and stabilization of polyurethane elastomers. Prog Polym Sci 90:211–268

    Article  CAS  Google Scholar 

  19. Zhong Y, You G, Cai S, Yang B (2019) QUV accelerated aging effects on the structure and properties of polyether polyurethane fibers. IOP Conf Series: Mater Sci Eng 562:012043

  20. Toshchevikov VP, Saphiannikova M, Heinrich G (2012) Theory of light-induced deformation of azobenzene elastomers: Influence of network structure. J Chem Phys 137:024903

  21. Saphiannikova M, Toshchevikov V, Ilnytskyi J (2010) Photoinduced deformations in azobenzene polymer films. Nonlinear Opt Quantum Opt 41:27–57

    CAS  Google Scholar 

  22. Siampiringue N, Guyot G, Monti S, Bortolus P (1987) The cis-trans photoisomerization of azobenzene: An experimental re-examination. J Photochem 37:185–188

    Article  CAS  Google Scholar 

  23. Morishima Y, Tsuji M, Kamaehi M, Hatada K (1992) Photochromic isomerization of azobenzene moieties compartmentalized in hydrophobic microdomains in a microphase structure of amphiphilic polyelectrolytes. Macromolecules 25:4406–4410

    Article  CAS  Google Scholar 

  24. Iqbal D, Samiullah MH (2013) Photo-responsive shape-memory and shape-changing liquid-crystal polymer networks. Materials 6:116–142

    Article  Google Scholar 

  25. Kondo M, Sugimoto M, Yamada M, Naka Y, Mamiya J-i, Kinoshita M, Shishido A, Yu Y, Ikeda T (2010) Effect of concentration of photoactive chromophores on photomechanical properties of crosslinked azobenzene liquid- crystalline polymers. J Mater Chem 20:117–122

    Article  CAS  Google Scholar 

  26. Van Hoorick J, Ottevaere H, Thienpont H, Dubruel P, Van Vlierberghe S Editors (2018) Polymer and photonic materials towards biomedical breakthroughs. Springer International Publishing AG Switzerland

  27. Wu Y, Natansohn A, Rochon P (2004) Photoinduced birefringence and surface relief gratings in polyurethane elastomers with azobenzene chromophore in the hard segment. Macromolecules 37:6090–6095

    Article  CAS  Google Scholar 

  28. Wu X, Liu L, Fang W, Qiao C, Li T (2016) Effect of hard segment architecture on shape memory properties of polycaprolactone-based polyurethane containing azobenzene. J Mater Sci 51:2727–2738

    Article  CAS  Google Scholar 

  29. Muzdalo A, Saalfrank P, Vreede J, Santer M (2018) Cis-to-trans isomerization of azobenzene derivatives studied with transition path sampling and quantum mechanical/molecular mechanical molecular dynamics. J Chem Theory Comput 14:2042–2051

    Article  CAS  Google Scholar 

  30. Karukatis KK, Perelman LA, Wong WK (2002) Spectroscopic characterization of azo dye aggregation on dendrimer surfaces. Langmuir 18:10363–10371

    Article  Google Scholar 

  31. El-R K, Al-Deyab SS, El-Newehy MH (2010) Controlled release of 5- aminosalicylic acid (5-ASA) from new biodegradable polyurethanes. Molecules 15:2257–2268

    Article  Google Scholar 

  32. Duarah R, Deka A, Karak N (2020) Multifaceted bioinspired hyperbranched polyurethane nanocomposite as a non-contact triggered self-healing material. eXPRESS Polym Lett 14:542–555

  33. Mahkam M, Assadi MG, Zahedifar R, Allahverdipoor M, Doostie L, Djozan J (2004) Synthesis and evaluation of new linear azo-polymers for colonic targeting. Des Monomers Polym 7:351–359

    Article  CAS  Google Scholar 

  34. Zemskov AV, Rodionova GN, Tuchin YG, Karpov VV (1988) IR spectra and structure of some azo dyes — p-azobenzene derivatives — In various aggregate states. J Appl Spectrosc 49:1020–1024

    Article  Google Scholar 

  35. Nguyen TL, Saleh MA (2020) Thermal degradation of azobenzene dyes. Results Chem 2:100085

  36. Akram N, Saleem S, Mahmood Zia K, Saeed M, Usman M, Maqsood S, Mumtaz N, Khan WG (2021) Stoichiometric-architectural impact on thermo-mechanical and morphological behavior of segmented polyurethane elastomers. J Polym Res 28:238

    Article  CAS  Google Scholar 

  37. Petrovic ZS, Milic J, Zhang F, Ilavsky J (2017) Fast-responding bio-based shape memory thermoplastic polyurethanes. Polymer 121:26–37

    Article  CAS  Google Scholar 

  38. Zhu R, Wang Y, Zhang Z, Ma D, Wang X (2016) Synthesis of polycarbonate urethane elastomers and effects of the chemical structures on their thermal, mechanical and biocompatibility properties. Heliyon 2:00125

    Article  Google Scholar 

  39. Premakumari J, Gnana Roy GA, Muthu Prabhu AA, Venkatesh G, Subramanian VK, Rajendiran N (2011) Effect of solvents and pH on β-cyclodextrin inclusion complexation of 2,4-dihydroxyazobenzene and 4-hydroxyazobenzene. J Solution Chem 40:327–347

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Oprea.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oprea, S., Potolinca, V.O. Behavior to UV irradiation of the polyurethanes containing azobenzene side groups in the main chains structure. J Polym Res 28, 369 (2021). https://doi.org/10.1007/s10965-021-02708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02708-6

Keywords

Navigation