Skip to main content
Log in

Effect of root zone soil moisture on the SWAT model simulation of surface and subsurface hydrological fluxes

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The current study analyses the effect of root zone soil moisture in the calibration and validation of Soil and Water Assessment Tool (SWAT) model. A multi-algorithm, genetically adaptive multi-objective method (AMALGAM) is used for the calibration of the model. The multi-variable calibration considering both streamflow and soil moisture is compared with a single-variable calibration considering streamflow and then analysed the effectiveness of root zone soil moisture in the calibration of SWAT. The results of the analysis show that the root zone soil moisture significantly influences the simulation of evapotranspiration component in SWAT. The SOL_AWC and SOL_K are found to be the key parameters for the simulation of hydrological fluxes in SWAT. The multi-variable calibration at the watershed outlet ensures a better process representation and spatial prediction in SWAT compared to the single-variable calibration approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The study used open source data from different sources.

References

  • Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H (2009) Assessing the impact of climate change on water resources in Iran. Water Resour Res 45(10):1–16. https://doi.org/10.1029/2008WR007615

    Article  Google Scholar 

  • Abbaspour KC, Rouholahnejad E, Vaghefi S, Srinivasan R, Yang H, Kløve B (2015) A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT model. J Hydrol 524:733–752. https://doi.org/10.1016/j.jhydrol.2015.03.027

    Article  Google Scholar 

  • Adab H, Morbidelli R, Saltalippi C, Moradian M, Ghalhari GAF (2020) Machine learning to estimate surface soil moisture from remote sensing data. Water 12(11):3223

    Article  Google Scholar 

  • Adeyemi O, Grove I, Peets S, Domun Y, Norton T (2018) Dynamic neural network modelling of soil moisture content for predictive irrigation scheduling. Sensors 18(10):3408

    Article  Google Scholar 

  • Ajmal M, Waseem M, Ahmad W, Kim TW (2016) Soil moisture dynamics with hydro-climatological parameters at different soil depths. Environ Earth Sci 75(2):133

    Article  Google Scholar 

  • Al-Mukhtar M (2016) Modelling the root zone soil moisture using artificial neural networks, a case study. Environ Earth Sci 75(15):1–12

    Article  Google Scholar 

  • Anderton SP, White SM, Alvera B (2002) Micro-scale spatial variability and the timing of snow melt runoff in a high mountain catchment. J Hydrol 268(1–4):158–176. https://doi.org/10.1016/S0022-1694(02)00179-8

    Article  Google Scholar 

  • Arnold JG, Allen PM, Muttiah R, Bernhardt G (1995) Automated base flow seperation and recession techniques. Ground Water 33:1010–1018

    Article  Google Scholar 

  • Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Griensven V, Liew V (2012) Digitals@University of Nebraska-Lincoln SWAT: model use, calibration, and validation. Biol Syst Eng: Papers Publ. 10(13031/2013):42263

    Google Scholar 

  • Arnold JG, Youssef MA, Yen H, White MJ, Sheshukov AY, Sadeghi AM et al (2015) Hydrological processes and model representation: impact of soft data on calibration. Trans ASABE 58(6):1637–1660. https://doi.org/10.13031/trans.58.10726

    Article  Google Scholar 

  • Athira P, Sudheer KP, Cibin R, Chaubey I (2016) Predictions in ungauged basins: an approach for regionalization of hydrological models considering the probability distribution of model parameters. Stoch Env Res Risk Assess 30(4):1131–1149. https://doi.org/10.1007/s00477-015-1190-6

    Article  Google Scholar 

  • Bekele EG, Nicklow JW (2007) Multi-objective automatic calibration of SWAT using NSGA-II. J Hydrol 341(3–4):165–176. https://doi.org/10.1016/j.jhydrol.2007.05.014

    Article  Google Scholar 

  • Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6(3):279–298. https://doi.org/10.1002/hyp.3360060305

    Article  Google Scholar 

  • Beven KJ, O’Connell PE (1982) On the role of physically-based distributed modelling in hydrology.

  • Bosch DD, Sheridan, JM, Lowrance RR, Hubbard RK, Strickland TC, Feyereisen GW, Sullivan DG (2007) Little river experimental watershed database. Water Resour Res 43(9)

  • Bosch DD, Arnold JG, Allen PG, Lim KJ, Park YS (2017) Temporal variations in baseflow for the Little River experimental watershed in South Georgia, USA. J Hydrol: Regional Stud 10:110–121. https://doi.org/10.1016/j.ejrh.2017.02.002

    Article  Google Scholar 

  • Brocca L, Moramarco T, Melone F, Wagner W, Hasenauer S, Hahn S (2012) Assimilation of surface- and root-zone ASCAT soil moisture products into rainfall-runoff modeling. IEEE Trans Geosci Remote Sens 50(7 PART1):2542–2555. https://doi.org/10.1109/TGRS.2011.2177468

    Article  Google Scholar 

  • Brocca L, Ciabatta L, Massari C, Camici S, Tarpanelli A (2017) Soil moisture for hydrological applications: open questions and new opportunities. Water 9(2):140

    Article  Google Scholar 

  • Cai Y, Zheng W, Zhang X, Zhangzhong L, Xue X (2019) Research on soil moisture prediction model based on deep learning. PLoS ONE 14(4):e0214508

    Article  Google Scholar 

  • Cammalleri C, Micale F, Vogt J (2016) A novel soil moisture-based drought severity index (DSI) combining water deficit magnitude and frequency. Hydrol Process 30(2):289–301

    Article  Google Scholar 

  • Cao W, Bowden WB, Davie T, Fenemor A (2006) Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability. Hydrol Process 20(5):1057–1073. https://doi.org/10.1002/hyp.5933

    Article  Google Scholar 

  • Chen F, Crow WT, Starks PJ, Moriasi DN (2011) Improving hydrologic predictions of a catchment model via assimilation of surface soil moisture. Adv Water Resour 34(4):526–536. https://doi.org/10.1016/j.advwatres.2011.01.011

    Article  Google Scholar 

  • Corradini C (2014) Soil moisture in the development of hydrological processes and its determination at different spatial scales. J Hydrol (amsterdam) 516:1–5

    Article  Google Scholar 

  • Dirmeyer PA, Zeng FJ, Ducharne A, Morrill JC, Koster RD (2000) The sensitivity of surface fluxes to soil water content in three land surface schemes. J Hydrometeorol 1(2):121–134

    Article  Google Scholar 

  • Ferguson IM, Jefferson JL, Maxwell RM, Kollet SJ (2016) Effects of root water uptake formulation on simulated water and energy budgets at local and basin scales. Environ Earth Sci 75(4):316

    Article  Google Scholar 

  • Feyereisen GW, Strickland TC, Bosch DD, Sullivan DG (2007) Evaluation of SWAT manual calibration and input parameter sensitivity in the little river watershed. Trans ASABE 50(3):843–855

    Article  Google Scholar 

  • Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future research directions. Trans ASABE 50(4):1211–1250

    Article  Google Scholar 

  • Geris J, Tetzlaff D, McDonnell JJ, Soulsby C (2017) Spatial and temporal patterns of soil water storage and vegetation water use in humid northern catchments. Sci Total Environ 595:486–493

    Article  Google Scholar 

  • Grillakis MG, Koutroulis AG, Komma J, Tsanis IK, Wagner W, Blöschl G (2016) Initial soil moisture effects on flash flood generation—a comparison between basins of contrasting hydro-climatic conditions. J Hydrol 541:206–217

    Article  Google Scholar 

  • Gupta HV, Sorooshian S, Yapo PO (1998) Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information. Water Resour Res 34(4):751–763. https://doi.org/10.1029/97WR03495

    Article  Google Scholar 

  • Guse B, Reusser DE, Fohrer N (2014) How to improve the representation of hydrological processes in SWAT for a lowland catchment—temporal analysis of parameter sensitivity and model performance. Hydrol Process 28(4):2651–2670. https://doi.org/10.1002/hyp.9777

    Article  Google Scholar 

  • Heathman GC, Starks PJ, Ahuja LR, Jackson TJ (2003) Assimilation of surface soil moisture to estimate profile soil water content. J Hydrol 279(1–4):1–17

    Article  Google Scholar 

  • Her Y, Cibin R, Chaubey I (2015) Application of parallel computing methods for improving efficiency of optimization in hydrologic and water quality modeling. Appl Eng Agric 31(3):455–468. https://doi.org/10.13031/aea.31.10905

    Article  Google Scholar 

  • Herman MR, Nejadhashemi AP, Abouali M, Hernandez-Suarez JS, Daneshvar F, Zhang Z et al (2018) Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability. J Hydrol 556:39–49. https://doi.org/10.1016/j.jhydrol.2017.11.009

    Article  Google Scholar 

  • Immerzeel WW, Droogers P (2008) Calibration of a distributed hydrological model based on satellite evapotranspiration. J Hydrol 349(3–4):411–424. https://doi.org/10.1016/j.jhydrol.2007.11.017

    Article  Google Scholar 

  • Kundu D, Vervoort RW, van Ogtrop FF (2017) The value of remotely sensed surface soil moisture for model calibration using SWAT. Hydrol Process 31(15):2764–2780. https://doi.org/10.1002/hyp.11219

    Article  Google Scholar 

  • McMillan HK, Clark MP, Bowden WB, Duncan M, Woods RA (2011) Hydrological field data from a modeller’s perspective: part 1. Diagnostic tests for model structure. Hydrol Process 25(4):511–522. https://doi.org/10.1002/hyp.7841

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Article  Google Scholar 

  • Moriasi DN, Gitau MW, Pai N, Daggupati P (2015) Hydrologic and water quality models: performance measures and evaluation criteria. Trans ASABE 58(6):1763–1785. https://doi.org/10.13031/trans.58.10715

    Article  Google Scholar 

  • Muleta M (2011) Improving model performance using dynamic evaluation and proper objective function. World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability—Proceedings of the 2011 World Environmental and Water Resources Congress, (1): 2820–2829. https://doi.org/10.1061/41173(414)294

  • Nathan RJ, McMahon TA (1990) Evaluation of automated techniques for base flow and recession analyses. Water Resour Res 26(7):1465–1473. https://doi.org/10.1029/WR026i007p01465

    Article  Google Scholar 

  • Nkiaka E, Nawaz NR, Lovett JC (2018) Effect of single and multi-site calibration techniques on hydrological model performance, parameter estimation and predictive uncertainty: a case study in the Logone catchment, Lake Chad basin. Stoch Environ Res Risk Assess 32(6):1665–1682. https://doi.org/10.1007/s00477-017-1466-0

    Article  Google Scholar 

  • Parajka J, Naeimi V, Blöschl G, Wagner W, Merz R, Scipal K (2006) Assimilating scatterometer soil moisture data into conceptual hydrologic models at the regional scale. Hydrol Earth Syst Sci 10(3):353–368

    Article  Google Scholar 

  • Penna D, Tromp-van Meerveld HJ, Gobbi A, Borga M, Dalla Fontana G (2011) The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrol Earth Syst Sci 13(3):689–702

    Article  Google Scholar 

  • Rajib MA, Merwade V, Yu Z (2016) Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture. J Hydrol 536:192–207. https://doi.org/10.1016/j.jhydrol.2016.02.037

    Article  Google Scholar 

  • Sahoo AK, Houser PR, Ferguson C, Wood EF, Dirmeyer PA, Kafatos M (2008) Evaluation of AMSR-E soil moisture results using the in-situ data over the Little River Experimental Watershed. Georgia Remote Sens Environ 112(6):3142–3152. https://doi.org/10.1016/j.rse.2008.03.007

    Article  Google Scholar 

  • Sharma V, Swayne DA, Lam D, Schertzer W (2006a) Parallel shuffled complex evolution algorithm for calibration of hydrological models. 20th International Symposium on High-Performance Computing in an Advanced Collaborative Environment, 2006. HPCS 2006, 30. https://doi.org/10.1109/HPCS.2006.34

  • Sharma V, Swayne D, Lam D, Schertzer W (2006b) Auto-calibration of hydrological models using high performance computing. Proceedings of the IEMSs 3rd Biennial Meeting, Summit on Environmental Modelling and Software

  • Sheridan JM (1997) Rainfall-streamflow relations for coastal plain watersheds. Appl Eng Agric 13(3):333–344

    Google Scholar 

  • Shi Y, Baldwin DC, Davis KJ, Yu X, Duffy CJ, Lin H (2015) Simulating high-resolution soil moisture patterns in the Shale Hills watershed using a land surface hydrologic model. Hydrol Process 29(21):4624–4637

    Article  Google Scholar 

  • Tobin KJ, Bennett ME (2017) Constraining SWAT calibration with remotely sensed evapotranspiration data. J Am Water Resour Assoc 53(3):593–604. https://doi.org/10.1111/1752-1688.12516

    Article  Google Scholar 

  • Vema VK, Sudheer KP (2020) Towards quick parameter estimation of hydrological models with large number of computational units. J Hydrol 587:124983

    Article  Google Scholar 

  • Vivoni ER, Moreno HA, Mascaro G, Rodriguez JC, Watts CJ, Garatuza-Payan J, Scott RL (2008) Observed relation between evapotranspiration and soil moisture in the North American monsoon region. Geophy Res Lett. https://doi.org/10.1029/2008GL036001

    Article  Google Scholar 

  • Wanders N, Bierkens MFP, de Jong SM, de Roo A, Karssenberg D (2014a) The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models. Water Resour Res 50(8):6874–6891. https://doi.org/10.1002/2013WR014639

    Article  Google Scholar 

  • Wanders N, Karssenberg D, Roo AD, De Jong SM, Bierkens MFP (2014b) The suitability of remotely sensed soil moisture for improving operational flood forecasting. Hydrol Earth Syst Sci 18(6):2343–2357

    Article  Google Scholar 

  • Wang C, Fu B, Zhang L, Xu Z (2019) Soil moisture–plant interactions: an ecohydrological review. J Soils Sediments 19(1):1–9

    Article  Google Scholar 

  • Yilmaz KK, Gupta HV, Wagener T (2008) A process-based diagnostic approach to model evaluation: application to the NWS distributed hydrologic model. Water Resour Res 44(9):1–18. https://doi.org/10.1029/2007WR006716

    Article  Google Scholar 

  • Zhang WM, Dong ZC, Zhu CT, Qian W (2008a) Automatic calibration of hydrologic model based on multi-objective particle swarm optimization method. J Hydraul Eng 39(5):528–534

    Google Scholar 

  • Zhang X, Srinivasan R, Van Liew M (2008b) Multi-site calibration of the SWAT model for hydrologic modeling. Trans ASABE 51(6):2039–2049. https://doi.org/10.13031/2013.25407

    Article  Google Scholar 

  • Zhang X, Srinivasan R, Zhao K, Liew MV (2009) Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model. Hydrol Process: Int J 23(3):430–441

    Article  Google Scholar 

  • Zhang X, Srinivasan R, Arnold J, Izaurralde RC, Bosch D (2011) Simultaneous calibration of surface flow and baseflow simulations: a revisit of the SWAT model calibration framework. Hydrol Process 25(14):2313–2320. https://doi.org/10.1002/hyp.8058

    Article  Google Scholar 

  • Zhao N, Yu F, Li C, Zhang L, Liu J, Mu W, Wang H (2015) Soil moisture dynamics and effects on runoff generation at small hillslope scale. J Hydrol Eng 20(7):05014024

    Article  Google Scholar 

Download references

Funding

There is no funding agency for this study.

Author information

Authors and Affiliations

Authors

Contributions

Rajat Choudhary: conceptualization, methodology, software, writing—original draft preparation. PA: resources, supervision, writing—reviewing and editing.

Corresponding author

Correspondence to P. Athira.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, R., Athira, P. Effect of root zone soil moisture on the SWAT model simulation of surface and subsurface hydrological fluxes. Environ Earth Sci 80, 620 (2021). https://doi.org/10.1007/s12665-021-09912-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09912-z

Keywords

Navigation