Skip to main content
Log in

Extraction of Zinc and Arsenic from Metallurgical Furnace Dust

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Millions of tons of dust produced in the process of gas cleaning are accumulated in dumps located near metallurgical plants. Such dust contains harmful impurities (Zn, As, Pb, and P), thus its recycling by the agglomeration method can lead to either environmental contamination or furnace damage. Hence, prior separation of iron from the impurities is required to improve the efficiency of the recycling process. Here we propose a new hydrometallurgical scheme for extracting iron in the form Na3FeF6 from the liquid phase produced as the result of dust acidic leaching. The ability of Na3FeF6 to interact with NaOH (KOH) with the formation of Fe(OH)3 has been utilized for separating Fe3+ ions from F. The proposed scheme is relatively simple, quick, and inexpensive, thus allowing its use at metallurgical plants to separate Fe from Zn, As, Pb, and P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Kukurugya, T. Vindt, and T. Havlík, Hydrometallurgy 154, 20. (2015).

    Article  Google Scholar 

  2. K. Gargul, and B. Boryczko, Arch. Civ. Mech. Eng. 15, 179. (2014).

    Article  Google Scholar 

  3. A.J.B. Dutra, P.R.P. Paiva, and L.M. Tavares, Miner. Eng. 19, 478. (2006).

    Article  Google Scholar 

  4. National Waste Collection Permit Office. European Waste Catalogue and Hazardous Waste List — Environmental Protection Agency, Valid from 1 January 2002. [cited 17. 03. 2020]; Available on Internet: http://www.nwcpo.ie/forms/EWC_code_book.pdf

  5. H.G. Wang, Yang Li, J.-M. Gao, M. Zhang, and M. Guo, Int. J. Miner. Metall. Mater. 23, 146 (2016).

  6. V. Montenegro, P. Oustadakis, P.E. Tsakiridis, and S.A. Leonardou, Metall. Mater. Trans. B 44, 1058. (2013).

    Article  Google Scholar 

  7. R. Chairaksa-Fujimoto, K. Maruyama, T. Miki, and T. Nagasaka, Hydrometallurgy 159, 120. (2016).

    Article  Google Scholar 

  8. T. Miki, R. Chairaksa-Fujimoto, K. Maruyama, and T. Nagasaka, J. Hazard. Mater. 302, 90. (2016).

    Article  Google Scholar 

  9. R.C. Fujimoto, Y. Inoue, N. Umeda, S. Itoh, and T. Nagasaka, Int. J. Min. Met. Mater. 22, 788. (2015).

    Article  Google Scholar 

  10. M.V. Cantarino, C.C. Filho, and M.B. Mansur, Hydrometallurgy 111–112, 124. (2012).

    Article  Google Scholar 

  11. K. Brunelli, and M. Dabalà, Int. J. Miner. Metall. Mater. 22, 353. (2015).

    Article  Google Scholar 

  12. G. Orhan, Hydrometallurgy 78, 236. (2005).

    Article  Google Scholar 

  13. Z.H. Trung, F. Kukurugya, Z. Takacova, D. Orac, M. Laubertova, A. Miskufova, and T. Havlik, J. Hazard. Mater. 192, 1100. (2011).

    Article  Google Scholar 

  14. T. Havlik, B. Friedrich, and S. Stopić, World Metall. Erzmetall. 57(2), 113. (2004).

    Google Scholar 

  15. T. Havlik, M. Turzakova, S. Stopic, and B. Friedrich, Hydrometallurgy 77, 41. (2005).

    Article  Google Scholar 

  16. J.M. Steer, and A.J. Griffiths, Hydrometallurgy 140, 34. (2013).

    Article  Google Scholar 

  17. I. Jaafar, A.J. Griffiths, A.C. Hopkins, J.M. Steer, M.H. Griffiths, and D.J. Sapsford, Miner. Eng. 24, 1028. (2011).

    Article  Google Scholar 

  18. H. Zhang, J. Li, A. Xu, Q. Yang, D. He, and N. Tian, J. Iron Steel Res. Int. 21(4), 427. (2014).

    Article  Google Scholar 

  19. M. Kazemi, and D. Sichen, J. Sustain. Metall. 2, 73. (2016).

    Article  Google Scholar 

  20. J. Vereš, M. Lovás, Š Jakabský, V. Šepelák, and S. Hredzák, Hydrometallurgy 129–130, 67. (2012).

    Article  Google Scholar 

  21. L. Wang, C. Wang, Y. Yu, X. Huang, Z. Long, Y. Hou, and D. Cui, J. Hazard. Mater. 209–210, 77. (2012).

    Article  Google Scholar 

  22. D.D. Thorat, B.M. Tripathi, and D. Sathiyamoorthy, Hydrometallurgy 109, 18. (2011).

    Article  Google Scholar 

  23. M. Kumar, M.N. Babu, T.R. Mankhand, and B.D. Pandey, Hydrometallurgy 104, 304. (2010).

    Article  Google Scholar 

  24. J.L. Gálvez, J. Dufour, C. Negro, and F. López-Mateo, Chem. Eng. J. 136, 116. (2008).

    Article  Google Scholar 

  25. J.L. Gálvez, J. Dufour, C. Negro, and F. López-Mateo, J. Hazard. Mater. 154, 135. (2008).

    Article  Google Scholar 

  26. J. Hermoso, J. Dufour, J.L. Gálvez, C. Negro, and F. López-Mateos, Ind. Eng. Chem. Res. 44, 5750. (2005).

    Article  Google Scholar 

  27. I.V. Tananaev, and E.N. Deichman, Factory Laboratory 12, 30. ((in Russian)) (1946).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to S.Kh. Estemirova and S.U. Melchakov for performing XRD and SEM/EDX analyses. This work was carried out within the framework of the state assignment of IMET UB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Kulikova.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 865 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiorova, A.V., Kulikova, T.V. & Shubin, A.B. Extraction of Zinc and Arsenic from Metallurgical Furnace Dust. JOM 73, 3588–3596 (2021). https://doi.org/10.1007/s11837-021-04866-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04866-w

Navigation