Skip to main content
Log in

Physics informed neural network for parameter identification and boundary force estimation of compliant and biomechanical systems

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

This paper presents the framework of a physics-informed neural network (PINN) with a boundary condition-embedded approximation function (BCAF) for solving common problems encountered in flexible mechatronics and soft robotics; both forward and inverse problems are considered. Unlike conventional PINNs that minimize a lumped loss function including the errors contributed by the initial or boundary conditions (ICs or BCs), the BCAF-PINN completely satisfies the ICs and/or BCs while minimizing a loss function for parameter identification and boundary force estimation, overcoming a common erroneous-convergence problem due to unbalanced gradients in training a PINN. The formulation and implementation of a BCAF-PINN are illustrated with three practical applications, including a nonlinear system where solutions are available for numerical verification and for comparing with conventional PINNs, and a biomechanical system where a BCAF-PINN uses multiple cycles of natural foot flexion to identify its dynamic parameters experimentally. While overcoming several problems associated with traditional studies based on perturbation models with certain level of muscle contraction, the damping ratio identified by the BCAF-PINN indicates that the ankle joint is an overdamped system during flexion, consistent with that observed in published experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

BC:

Boundary condition

BCAF:

BC-embedded approximation function

BCLF:

BC loss function

BVP:

Boundary value problem

DOF:

Degree of freedom

DF:

Dorsiflexion

FM:

First metarsal heads

FSM:

Full state measurement

HF:

Head of fibula

IBK:

Inertia I, viscous B and elastic K model

IC:

Initial condition

IVP:

Initial value problem

LM:

Lateral malleolus

MM:

Medial malleolus

MSO:

Multiple single output

ODE:

Ordinary differential equation

PDE:

Partial differential equation

PF:

Plantarflexion

PINN:

Physics informed neural network

PSM:

Partial state measurement

RC:

Ridge of the calcaneus

SMO:

Single multiple output

SS:

State space

VM:

Fifth metarsal heads

A :

ICs/BCs satisfied function entry

E, G :

Elastic and shear modulus

F :

ICs/BCs no contribution function entry

I :

Area moment of inertia

J :

Average angular moment of inertia of foot

L :

Length

N :

Network output entry

M :

Number of measurements

A :

ICs/BCs satisfied function vector

F :

ICs/BCs no contribution function vector

N :

Network output vector

P C :

Position vector of beam end point

a :

Initial/boundary conditions

b, h :

Beam width, thickness

s, t :

Path-length,, time

x, y :

Independent, dependent variable

y a :

BCAF dependent variable entry

\(\hat{y}_{a}\) :

BCLF dependent variable entry

u :

Applied force

u 1, u 2 :

Applied force in y1, y2 directions

u M :

Ankle joint net torque

e 0 :

Initial error

e b :

Boundary error

e i :

Measurement error

p :

Network weights and biases

r p :

Residual

x, y :

Independent, dependent variable vectors

y a :

BCAF dependent variable vector

\({\hat{\mathbf{y}}}_{a}\) :

BCLF dependent variable vector

Γ:

Structural rigidity

\({{\mathcal{G}}}\) :

Differential operator

\({{\mathcal{L}}}_{\text{F}}\) :

BCAF forward loss function

\({{\mathcal{L}}}_{\text{I}}\) :

BCAF inverse loss function

\({\hat{\mathcal{L}}}_{\text{F}}\) :

BCLF forward loss function

\({\hat{\mathcal{L}}}_{\text{I}}\) :

BCLF inverse loss function

α, α :

Coefficient entry/vector

λ :

Magnitude tuning factor

ρ,ν :

Density and Poisson ratio

ψ,κ :

Angle of rotation and curvature

η :

Initial angle of rotation

θ :

Foot flexion angle

ζ,ω n :

Damping ratio and natural frequency

References

  • Chen, Y., Lu, L., Karniadakis, G.E., Dal Negro, L.: Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Opt Express 28(8), 11618–11633 (2020)

    Article  Google Scholar 

  • Gunes Baydin, A., Pearlmutter, B.A., Andreyevich Radul, A., and Siskind, J.M.: Automatic differentiation in machine learning: a survey. arXiv e-prints, p. arXiv:1502.05767, 2015.

  • Guo, J., Lee, K., Zhu, D., Yi, X., Wang, Y.: Large-deformation analysis and experimental validation of a flexure-based mobile sensor node. IEEE/ASME Trans. Mechatron. 17(4), 606–616 (2012)

    Article  Google Scholar 

  • Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  • Jiang, J., Li, W., Lee, K.-M.: a novel pantographic exoskeleton based collocated joint design with application for early stroke rehabilitation. IEEE/ASME Trans. Mechatron. 25(4), 1922–1932 (2020)

    Article  Google Scholar 

  • Jiang, J., Li, W., Lee, K., Ji, J.: Physics-based Ankle Kinematics for Estimating Internal Parameters. In IEEE/ASME Int. Conf. advanced intelligent mechatronics. Hong Kong, China, pp. 471-476 (2019)

  • Kearney, R.E., Hunter, I.W.: Dynamics of human ankle stiffness: variation with displacement amplitude. J. Biomech. 15(10), 753–756 (1982)

    Article  Google Scholar 

  • Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000 (1998)

    Article  Google Scholar 

  • Lan, C.-C., Lee, K.-M.: generalized shooting method for analyzing compliant mechanisms with curved members. J. Mech. Design 128(4), 765–775 (2006)

    Article  Google Scholar 

  • Lee, H., Krebs, H.I., Hogan, N.: Multivariable dynamic ankle mechanical impedance with active muscles. IEEE Trans. Neural Syst. Rehabil. Eng. 22(5), 971–981 (2014)

    Article  Google Scholar 

  • Mirbagheri, M.M., Barbeau, H., Kearney, R.E.: Intrinsic and reflex contributions to human ankle stiffness: variation with activation level and position. Exp. Brain Res. 135(4), 423–436 (2000)

    Article  Google Scholar 

  • Misgeld, B.J., Zhang, T., Luken, M.J., Leonhardt, S.: Model-based estimation of ankle joint stiffness. Sensors 17(4), 713 (2017)

    Article  Google Scholar 

  • Petri, E., Hao, G., Kavanagh, R.C.: Design and hybrid control of a two-axis flexure-based positioning system. Int. J. Intell. Robot. Appl. (2021). https://doi.org/10.1007/s41315-021-00162-7

  • Pun, G.P.P., Batra, R., Ramprasad, R., Mishin, Y.: Physically informed artificial neural networks for atomistic modeling of materials. Nat. Commun. 10(1), 2339 (2019)

    Article  Google Scholar 

  • Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  Google Scholar 

  • Rastgaar, M.A., Ho, P., Lee, H., Krebs, H.I., Hogan, N.: Stochastic estimation of multi-variable human ankle mechanical impedance. ASME Dyn. Syst. Control Conf. 2, 45–47 (2009). (Hollywood, California, USA)

    Google Scholar 

  • Thomas, T.L., Kalpathy Venkiteswaran, V., Ananthasuresh, G.K., Misra, S.: Surgical applications of compliant mechanisms: a review. J. Mech. Robot. (2021). https://doi.org/10.1115/1.4049491

    Article  Google Scholar 

  • Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient pathologies in physics-informed neural networks. arXiv e-prints, arXiv:2001.04536, 2020

  • Wang, J.-Y., Lan, C.-C.: A constant-force compliant gripper for handling objects of various sizes. J. Mech. Design 136, 071008 (2014)

    Article  Google Scholar 

  • Weiss, P.L., Kearney, R.E., Hunter, I.W.: Position dependence of ankle joint dynamics—I. Passive mechanics. J. Biomech. 19(9), 727–735 (1986)

    Article  Google Scholar 

  • Wessels, H., Weißenfels, C., Wriggers, P.: The neural particle method—an updated Lagrangian physics informed neural network for computational fluid dynamics. Comput. Methods Appl. Mech. Eng. 368, 113127 (2020)

    Article  MathSciNet  Google Scholar 

  • Yazdani, A., Lu, L., Raissi, M., Karniadakis, G.E.: Systems biology informed deep learning for inferring parameters and hidden dynamics. PLoS Comput. Biol. 16(11), e1007575 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the U.S. National Science Foundation under Grant CMMI-1662700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kok-Meng Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Lee, KM. Physics informed neural network for parameter identification and boundary force estimation of compliant and biomechanical systems. Int J Intell Robot Appl 5, 313–325 (2021). https://doi.org/10.1007/s41315-021-00196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-021-00196-x

Keywords

Navigation